scholarly journals Explicit Analysis of Sheet Metal Forming Processes Using Solid-Shell Elements

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 52
Author(s):  
Qiao-Min Li ◽  
Zhao-Wei Yi ◽  
Yu-Qi Liu ◽  
Xue-Feng Tang ◽  
Wei Jiang ◽  
...  

To simulate sheet metal forming processes precisely, an in-house dynamic explicit code was developed to apply a new solid-shell element to sheet metal forming analyses, with a corotational coordinate system utilized to simplify the nonlinearity and to integrate the element with anisotropic constitutive laws. The enhancing parameter of the solid-shell element, implemented to circumvent the volumetric and thickness locking phenomena, was condensed into an explicit form. To avoid the rank deficiency, a modified physical stabilization involving the B-bar method and reconstruction of transverse shear components was adopted. For computational efficiency of the solid-shell element in numerical applications, an adaptive mesh subdivision scheme was developed, with element geometry and contact condition taken as subdivision criteria. To accurately capture the anisotropic behavior of sheet metals, material models with three different anisotropic yield functions were incorporated. Several numerical examples were carried out to validate the accuracy of the proposed element and the efficiency of the adaptive mesh subdivision.

2015 ◽  
Vol 651-653 ◽  
pp. 344-349 ◽  
Author(s):  
Peng Wang ◽  
Hocine Chalal ◽  
Farid Abed-Meraim

Thin structures are commonly designed and employed in engineering industries to save material, reduce weight and improve the overall performance of products. The finite element (FE) simulation of such thin structural components has become a powerful and useful tool in this field. For the last few decades, much attention and effort have been paid to establish accurate and efficient FE. In this regard, the solid–shell concept proved to be very attractive due to its multiple advantages. Several treatments are additionally applied to the formulation of solid–shell elements to avoid all locking phenomena and to guarantee the accuracy and efficiency during the simulation of thin structures. The current contribution presents a family of prismatic and hexahedral assumed-strain based solid–shell elements, in which an arbitrary number of integration points are distributed along the thickness direction. Both linear and quadratic formulations of the solid–shell family elements are implemented into ABAQUS static/implicit and dynamic/explicit software to model thin 3D problems with only a single layer through the thickness. Two popular benchmark tests are first conducted, in both static and dynamic analyses, for validation purposes. Then, attention is focused on a complex sheet metal forming process involving large strain, plasticity and contact.


Sign in / Sign up

Export Citation Format

Share Document