Characterization of one-dimensional cellular automata rules through topological network features

Author(s):  
Lou D’Alotto ◽  
Clara Pizzuti
2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Pabitra Pal Choudhury ◽  
Sudhakar Sahoo ◽  
Mithun Chakraborty

Dynamics of a nonlinear cellular automaton (CA) is, in general asymmetric, irregular, and unpredictable as opposed to that of a linear CA, which is highly systematic and tractable, primarily due to the presence of a matrix handle. In this paper, we present a novel technique of studying the properties of the State Transition Diagram of a nonlinear uniform one-dimensional cellular automaton in terms of its deviation from a suggested linear model. We have considered mainly elementary cellular automata with neighborhood of size three, and, in order to facilitate our analysis, we have classified the Boolean functions of three variables on the basis of number and position(s) of bit mismatch with linear rules. The concept of deviant and nondeviant states is introduced, and hence an algorithm is proposed for deducing the State Transition Diagram of a nonlinear CA rule from that of its nearest linear rule. A parameter called the proportion of deviant states is introduced, and its dependence on the length of the CA is studied for a particular class of nonlinear rules.


2001 ◽  
Vol 7 (3) ◽  
pp. 277-301 ◽  
Author(s):  
Gina M. B. Oliveira ◽  
Pedro P. B. de Oliveira ◽  
Nizam Omar

Cellular automata (CA) are important as prototypical, spatially extended, discrete dynamical systems. Because the problem of forecasting dynamic behavior of CA is undecidable, various parameter-based approximations have been developed to address the problem. Out of the analysis of the most important parameters available to this end we proposed some guidelines that should be followed when defining a parameter of that kind. Based upon the guidelines, new parameters were proposed and a set of five parameters was selected; two of them were drawn from the literature and three are new ones, defined here. This article presents all of them and makes their qualities evident. Then, two results are described, related to the use of the parameter set in the Elementary Rule Space: a phase transition diagram, and some general heuristics for forecasting the dynamics of one-dimensional CA. Finally, as an example of the application of the selected parameters in high cardinality spaces, results are presented from experiments involving the evolution of radius-3 CA in the Density Classification Task, and radius-2 CA in the Synchronization Task.


Author(s):  
Péter Gács ◽  
Ilkka Törmä

AbstractEroders are monotonic cellular automata with a linearly ordered state set that eventually wipe out any finite island of nonzero states. One-dimensional eroders were studied by Gal’perin in the 1970s, who presented a simple combinatorial characterization of the class. The multi-dimensional case has been studied by Toom and others, but no such characterization has been found. We prove a similar characterization for those one-dimensional monotonic cellular automata that are eroders even in the presence of random noise.


Author(s):  
Kazuyuki MIYAKITA ◽  
Keisuke NAKANO ◽  
Masakazu SENGOKU ◽  
Shoji SHINODA

2002 ◽  
Vol 37 (2-3) ◽  
pp. 169-175 ◽  
Author(s):  
K. Yanxiong ◽  
L. Jianmin ◽  
Z. Yugen ◽  
H. Gaofei ◽  
J. Zheng ◽  
...  

Molbank ◽  
10.3390/m1179 ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. M1179
Author(s):  
Eleftherios Halevas ◽  
Antonios Hatzidimitriou ◽  
Barbara Mavroidi ◽  
Marina Sagnou ◽  
Maria Pelecanou ◽  
...  

A novel Cu(II) complex based on the Schiff base obtained by the condensation of ortho-vanillin with gamma-aminobutyric acid was synthesized. The compounds are physico-chemically characterized by elemental analysis, HR-ESI-MS, FT-IR, and UV-Vis. The complex and the Schiff base ligand are further structurally identified by single crystal X-ray diffraction and 1H and 13C-NMR, respectively. The results suggest that the Schiff base are synthesized in excellent yield under mild reaction conditions in the presence of glacial acetic acid and the crystal structure of its Cu(II) complex reflects an one-dimensional polymeric compound. The molecular structure of the complex consists of a Cu(II) ion bound to two singly deprotonated Schiff base bridging ligands that form a CuN2O4 chelation environment, and a coordination sphere with a disordered octahedral geometry.


2021 ◽  
Author(s):  
Lei Jin ◽  
Nerea Bilbao ◽  
Yang Lv ◽  
Xiao-Ye Wang ◽  
Soltani Paniz ◽  
...  

Graphene nanoribbons (GNRs), quasi-one-dimensional strips of graphene, exhibit a nonzero bandgap due to quantum confinement and edge effects. In the past decade, different types of GNRs with atomically precise structures...


Sign in / Sign up

Export Citation Format

Share Document