2D Self-assembly and Electronic Characterization of Oxygen-Boron-Oxygen-Doped Chiral Graphene Nanoribbons

2021 ◽  
Author(s):  
Lei Jin ◽  
Nerea Bilbao ◽  
Yang Lv ◽  
Xiao-Ye Wang ◽  
Soltani Paniz ◽  
...  

Graphene nanoribbons (GNRs), quasi-one-dimensional strips of graphene, exhibit a nonzero bandgap due to quantum confinement and edge effects. In the past decade, different types of GNRs with atomically precise structures...

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hrag Karakachian ◽  
T. T. Nhung Nguyen ◽  
Johannes Aprojanz ◽  
Alexei A. Zakharov ◽  
Rositsa Yakimova ◽  
...  

AbstractThe ability to define an off state in logic electronics is the key ingredient that is impossible to fulfill using a conventional pristine graphene layer, due to the absence of an electronic bandgap. For years, this property has been the missing element for incorporating graphene into next-generation field effect transistors. In this work, we grow high-quality armchair graphene nanoribbons on the sidewalls of 6H-SiC mesa structures. Angle-resolved photoelectron spectroscopy (ARPES) and scanning tunneling spectroscopy measurements reveal the development of a width-dependent semiconducting gap driven by quantum confinement effects. Furthermore, ARPES demonstrates an ideal one-dimensional electronic behavior that is realized in a graphene-based environment, consisting of well-resolved subbands, dispersing and non-dispersing along and across the ribbons respectively. Our experimental findings, coupled with theoretical tight-binding calculations, set the grounds for a deeper exploration of quantum confinement phenomena and may open intriguing avenues for new low-power electronics.


CrystEngComm ◽  
2011 ◽  
Vol 13 (19) ◽  
pp. 5783 ◽  
Author(s):  
Xiuhua Wang ◽  
Sufan Wang ◽  
Li Liu ◽  
Mingwang Shao ◽  
Shifeng Li

2021 ◽  
Vol 9 ◽  
Author(s):  
Federica Cavallo ◽  
Angelika Mohn ◽  
Francesco Chiarelli ◽  
Cosimo Giannini

Bone age represents a common index utilized in pediatric radiology and endocrinology departments worldwide for the definition of skeletal maturity for medical and non-medical purpose. It is defined by the age expressed in years that corresponds to the level of maturation of bones. Although several bones have been studied to better define bone age, the hand and wrist X-rays are the most used images. In fact, the images obtained by hand and wrist X-ray reflect the maturity of different types of bones of the skeletal segment evaluated. This information, associated to the characterization of the shape and changes of bone components configuration, represent an important factor of the biological maturation process of a subject. Bone age may be affected by several factors, including gender, nutrition, as well as metabolic, genetic, and social factors and either acute and chronic pathologies especially hormone alteration. As well several differences can be characterized according to the numerous standardized methods developed over the past decades. Therefore, the complete characterization of the main methods and procedure available and particularly of all their advantages and disadvantages need to be known in order to properly utilized this information for all its medical and non-medical main fields of application.


Author(s):  
Wenjing Miao ◽  
Wang Li ◽  
Xijiao Mu ◽  
Jingang Wang

Graphene nanoribbons (GNRs) are quasi-one-dimensional graphene nanostructures. Due to quantum confinement and boundary effects, the electronic structure of GNRs is closely related to the width and edge structure. In recent...


2020 ◽  
Vol 27 (8) ◽  
pp. 688-697
Author(s):  
Yu Chen ◽  
Kai Tao ◽  
Wei Ji ◽  
Pandeeswar Makam ◽  
Sigal Rencus-Lazar ◽  
...  

Supramolecular self-assembled functional materials comprised of cyclic dipeptide building blocks have excellent prospects for biotechnology applications due to their exceptional structural rigidity, morphological flexibility, ease of preparation and modification. Although the pharmacological uses of many natural cyclic dipeptides have been studied in detail, relatively little is reported on the engineering of these supramolecular architectures for the fabrication of functional materials. In this review, we discuss the progress in the design, synthesis, and characterization of cyclic dipeptide supramolecular nanomaterials over the past few decades, highlighting applications in biotechnology and optoelectronics engineering.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1000
Author(s):  
Eduardo Guzmán

Fluid interfaces are promising candidates for the design of new functional materials by confining different types of materials, e.g., polymers, surfactants, colloids, or even small molecules, by direct spreading or self-assembly from solutions. The development of such materials requires a deep understanding of the physico-chemical bases underlying the formation of layers at fluid interfaces, as well as the characterization of the structures and properties of such layers. This is of particular importance, because the constraints associated with the assembly of materials at the interface lead to the emergence of equilibrium and dynamic features in the interfacial systems that are far from those found in traditional 3D materials. These new properties are of importance in many scientific and technological fields, such as food science, cosmetics, biology, oil recovery, electronics, drug delivery, detergency, and tissue engineering. Therefore, the understanding of the theoretical and practical aspects involved in the preparation of these interfacial systems is of paramount importance for improving their usage for designing innovative technological solutions.


2009 ◽  
Vol 09 (02) ◽  
pp. 277-292 ◽  
Author(s):  
R. BELFADLI ◽  
S. HAMADÈNE ◽  
Y. OUKNINE

We prove existence and pathwise uniqueness results for four different types of stochastic differential equations (SDEs) perturbed by the past maximum process and/or the local time at zero. Along the first three studies, the coefficients are no longer Lipschitz. The first type is the equation [Formula: see text] The second type is the equation [Formula: see text] The third type is the equation [Formula: see text] We end the paper by establishing the existence of strong solution and pathwise uniqueness, under Lipschitz condition, for the SDE [Formula: see text]


Synlett ◽  
2017 ◽  
Vol 28 (19) ◽  
pp. 2509-2516 ◽  
Author(s):  
Peter Jacobse ◽  
Marc-Etienne Moret ◽  
Robertus Klein Gebbink ◽  
Ingmar Swart

The field of on-surface synthesis has seen a tremendous development in the past decade as an exciting new methodology towards atomically well-defined nanostructures. A strong driving force in this respect is its inherent compatibility with scanning probe techniques, which allows one to ‘view’ the reactants and products at the single-molecule level. In this article, we review the ability of noncontact atomic force microscopy to study on-surface chemical reactions with atomic precision. We highlight recent advances in using noncontact atomic force microscopy to obtain mechanistic insight into reactions and focus on the recently elaborated mechanisms in the formation of different types of graphene nanoribbons.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 110
Author(s):  
Lin-Lin Xiao ◽  
Xu Zhou ◽  
Kan Yue ◽  
Zi-Hao Guo

In the past two decades, conjugated polymers (CPs) have drawn great attention due to their excellent conductivity and charge mobility, rendering them broad applications in organic electronics. Controlling over the morphologies and nanostructures of CPs is very important to improve the performance of CP-based devices, which is still a tremendously difficult task. Conjugated block copolymers (cBCPs), composed of different CP blocks or CP coupled with coiled polymeric blocks, not only maintain the advantages of high conductivity and mobility but also demonstrate features of morphological versatility and tunability. Due to the strong π–π interaction and crystallinity of the conjugated backbones, the self-assembly behaviors of cBCPs are very complicated and largely remain to be explored. In this tutorial review, we first summarize the general synthetic methods for different types of cBCPs. Then, recent studies on the self-assembly behaviors of cBCPs are discussed, with an emphasis on the structural factors that affect the morphologies of cBCPs both in bulk and thin film states. Finally, we briefly provide our outlook on the future research of the self-assembly of cBCPs.


A huge amount of exploration propagated over the past decade investigates the characterization of Partial Discharge (PD) inception in cable ideology. Underground cables are passed down as surrogate for over hauling in congested areas. The intention of this research is to examine the feasibility of exploring insulation defects present in High Voltage (HV) Cable setup by employing PD disclosure under alternating current (AC) Voltage. Study of PD characteristics has a congregate of predictable distinguished contraption to prove the probity and the affirmation of electrical insulation of Power System. In this work, the cable is exposed into the measurement of PD signal under artificially conceived defects. PD signal parameters are mainly depends on the size of void and applied voltage. In general, the measured PD signal is depraved with interferences. To identify the exact characteristics of PD distinctive and its severity, the PD signal is subjected to Wavelet Transform (WT) for denoising. Different types of WT families with various level is used for de-noising. To identify the effectiveness of the WT for de-noising guidelines like Signal to Reconstruction Error Ratio (SRER) and Reduction in Noise Level (RNL) are used.


Sign in / Sign up

Export Citation Format

Share Document