scholarly journals Comment on “Radiation forces and torque on a rigid elliptical cylinder in acoustical plane progressive and (quasi)standing waves with arbitrary incidence” [Phys. Fluids 28, 077104 (2016)]

2017 ◽  
Vol 29 (2) ◽  
pp. 029101 ◽  
Author(s):  
Philip L. Marston
2011 ◽  
Vol 117-119 ◽  
pp. 624-632
Author(s):  
Lin Xu ◽  
Adrian Neild

Acoustic radiation forces can be used to collect particles within microfluidic systems. The standard way of doing this is to excite a one-dimensional standing wave between a pair of solid walls; the particles will then typically collect at the pressure nodes. Higher degrees of positioning control can be achieved by excitation of additional orthogonal one-dimensional standing waves; this usually requires further walled constraints (two-dimensional collection for example requiring a chamber rather than a channel). In this work we examine methods of exciting two-dimensional fields in a channel using a single transducer as well as the use of pressure fields which are not one-dimensional in nature and the advantages they can offer.


2018 ◽  
Vol 35 (7) ◽  
pp. 1700470 ◽  
Author(s):  
Christopher Reyes ◽  
Lin Fu ◽  
Pearlson P. A. Suthanthiraraj ◽  
Crystal E. Owens ◽  
C. Wyatt Shields ◽  
...  

1986 ◽  
Vol 149 (05) ◽  
pp. 69-103 ◽  
Author(s):  
M.V. Koval'chuk ◽  
V.G. Kohn
Keyword(s):  

1977 ◽  
Vol 5 (4) ◽  
pp. 202-225 ◽  
Author(s):  
G. R. Potts ◽  
C. A. Bell ◽  
L. T. Charek ◽  
T. K. Roy

Abstract Natural frequencies and vibrating motions are determined in terms of the material and geometric properties of a radial tire modeled as a thin ring on an elastic foundation. Experimental checks of resonant frequencies show good agreement. Forced vibration solutions obtained are shown to consist of a superposition of resonant vibrations, each rotating around the tire at a rate depending on the mode number and the tire rotational speed. Theoretical rolling speeds that are upper bounds at which standing waves occur are determined and checked experimentally. Digital Fourier transform, transfer function, and modal analysis techniques used to determine the resonant mode shapes of a radial tire reveal that antiresonances are the primary transmitters of vibration to the tire axle.


1988 ◽  
Vol 16 (1) ◽  
pp. 18-43 ◽  
Author(s):  
J. T. Oden ◽  
T. L. Lin ◽  
J. M. Bass

Abstract Mathematical models of finite deformation of a rolling viscoelastic cylinder in contact with a rough foundation are developed in preparation for a general model for rolling tires. Variational principles and finite element models are derived. Numerical results are obtained for a variety of cases, including that of a pure elastic rubber cylinder, a viscoelastic cylinder, the development of standing waves, and frictional effects.


Sign in / Sign up

Export Citation Format

Share Document