Effect of aspect ratio on convective heat transfer for flat cross section using nanofluid

2017 ◽  
Author(s):  
Syed Rafat Faysal ◽  
Ifat Rabbil Qudrat Ovi ◽  
A. K. M. Sadrul Islam
2015 ◽  
Vol 138 (4) ◽  
Author(s):  
Pamela Vocale ◽  
Gian Luca Morini ◽  
Marco Spiga

In this work, hydrodynamically and thermally fully developed gas flow through elliptical microchannels is numerically investigated. The Navier–Stokes and energy equations are solved by considering the first-order slip flow boundary conditions and by assuming that the wall heat flux is uniform in the axial direction, and the wall temperature is uniform in the peripheral direction (i.e., H1 boundary conditions). To take into account the microfabrication of the elliptical microchannels, different heated perimeter lengths are analyzed along the microchannel wetted perimeter. The influence of the cross section geometry on the convective heat transfer coefficient is also investigated by considering the most common values of the elliptic aspect ratio, from a practical point of view. The numerical results put in evidence that the Nusselt number is a decreasing function of the Knudsen number for all the considered configurations. On the contrary, the role of the cross section geometry in the convective heat transfer depends on the thermal boundary condition and on the rarefaction degree. With the aim to provide a useful tool for the designer, a correlation that allows evaluating the Nusselt number for any value of aspect ratio and for different working gases is proposed.


1991 ◽  
Vol 113 (3) ◽  
pp. 604-611 ◽  
Author(s):  
C. Y. Soong ◽  
S. T. Lin ◽  
G. J. Hwang

The paper presents an experimental study of convective heat transfer in radially rotating isothermal rectangular ducts with various height and width aspect ratios. The convective heat transfer is affected by secondary flows resulting from Coriolis force and the buoyancy flow, which is in turn due to the centrifugal force in the duct. The growth and strength of the secondary flow depend on the rotational Reynolds number; the effect of the buoyancy flow is characterized by the rotational Rayleigh number. The aspect ratio of the duct may affect the secondary flow and the buoyancy flow, and therefore is also a critical parameter in the heat transfer mechanism. In the present work the effects of the main flow, the rotational speed, and the aspect ratio γ on heat transfer are subjects of major interest. Ducts of aspect ratios γ=5, 2, 1, 0.5, and 0.2 at rotational speed up to 3000 rpm are studied. The main flow Reynolds number ranges from 700 to 20,000 to cover the laminar, transitional, and turbulent flow regimes in the duct flow. Test data and discussion are presented.


1986 ◽  
Vol 108 (1) ◽  
pp. 33-39 ◽  
Author(s):  
M. A. Ebadian ◽  
H. C. Topakoglu ◽  
O. A. Arnas

The convective heat transfer problem along the portion of a tube of elliptic cross section maintained under a constant wall temperature where hydrodynamically and thermally fully developed flow conditions prevail is solved in this paper. The successive approximation method is used for the solution utilizing elliptic coordinates. Analytical expressions for temperature distribution and Nusselt number corresponding to the first cycle of approximation are obtained in terms of the ellipticity of the cross section. In the case of a circular section, the first cycle approximation of the Nusselt number is obtained as 3.7288 compared to the exact value of 3.6568. Representative temperature distribution curves are plotted and compared to those corresponding with constant wall heat flux conditions.


2012 ◽  
Vol 38 (1) ◽  
pp. 89-92
Author(s):  
李健 LI Jian ◽  
乔焱 QIAO Yan ◽  
崔伟 CUI Wei ◽  
董浩然 DONG Haoran ◽  
毕学进 BI Xuejin

Sign in / Sign up

Export Citation Format

Share Document