The chirality-dependent fracture properties of single-layer graphene sheets: Molecular dynamics simulations and finite element method

2017 ◽  
Vol 122 (2) ◽  
pp. 025110 ◽  
Author(s):  
Zonghuiyi Jiang ◽  
Rong Lin ◽  
Peishi Yu ◽  
Yu Liu ◽  
Ning Wei ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jianzhang Huang ◽  
Qiang Han

The formation and evolution mechanisms of wrinkling in a rectangular single layer graphene sheet (SLGS) with simply supported boundary subjected to in-plane shear displacements are investigated using molecular dynamics simulations. Through investigating the out-of-plane displacements of the key point atom, we clarify the wrinkling growth and propagation process. Our results show that the boundary condition plays important roles in the wrinkling deformation. And the dependence of wrinkling parameters on the applied shear displacements is captured. Based on the elasticity theory, the formation mechanism of graphene wrinkling is revealed from the viewpoint of elastic energy. The effects of aspect ratio of graphene, temperature, and loading velocity on graphene wrinkling parameters and patterns are also investigated.


2013 ◽  
Vol 114 (12) ◽  
pp. 123506 ◽  
Author(s):  
Haw-Long Lee ◽  
Jung-Chang Hsu ◽  
Shu-Yu Lin ◽  
Win-Jin Chang

2018 ◽  
Author(s):  
Ramkumar Balasubramanian ◽  
Sohini Pal ◽  
Himanshu Joshi ◽  
Banani Chakraborty ◽  
Akshay Naik ◽  
...  

<p>Pore-functionalization has been explored by several groups as a strategy to control DNA translocation through solid-state nanopores. Here we present a hybrid nanopore system consisting of single-layer graphene and a DNA origami layer to achieve base-selective control of DNA translocation rate through aligned nanopores of the two layers. This is achieved by incorporating unpaired dangling bases called overhangs to the origami near the pore region. Molecular dynamics simulations were used to optimize the design of the origami nanopore and the overhangs. Specifically, we considered the influence of the number and spatial distribution of overhangs on translocation times. The simulations revealed that specific interactions between the overhangs and the translocating single stranded DNA resulted in base-specific residence times. <b></b></p>


2018 ◽  
Author(s):  
Ramkumar Balasubramanian ◽  
Sohini Pal ◽  
Himanshu Joshi ◽  
Banani Chakraborty ◽  
Akshay Naik ◽  
...  

<p>Pore-functionalization has been explored by several groups as a strategy to control DNA translocation through solid-state nanopores. Here we present a hybrid nanopore system consisting of single-layer graphene and a DNA origami layer to achieve base-selective control of DNA translocation rate through aligned nanopores of the two layers. This is achieved by incorporating unpaired dangling bases called overhangs to the origami near the pore region. Molecular dynamics simulations were used to optimize the design of the origami nanopore and the overhangs. Specifically, we considered the influence of the number and spatial distribution of overhangs on translocation times. The simulations revealed that specific interactions between the overhangs and the translocating single stranded DNA resulted in base-specific residence times. <b></b></p>


2016 ◽  
Vol 51 (23) ◽  
pp. 3299-3313 ◽  
Author(s):  
Sumit Sharma ◽  
Pramod Kumar ◽  
Rakesh Chandra

Single layer graphene sheets and carbon nanotubes have resulted in the development of new materials for a variety of applications. Though there are a large number of experimental and numerical studies related to these nanofillers, still there is a lack of understanding of the effect of geometrical characteristics of these nanofillers on their mechanical properties. In this study, molecular dynamics simulation has been used to assess this issue. Two different computational models, single layer graphene sheets–copper and carbon nanotube–copper composites have been examined to study the effect of nanofiller geometry on Young’s modulus and thermal conductivity of these nanocomposites. Effect of increase in temperature on Young’s modulus has also been predicted using molecular dynamics. The effect of nanofiller volume fraction ( Vf) on Young’s modulus and thermal conductivity has also been studied. Results of thermal conductivity obtained using molecular dynamics have been compared with theoretical models. Results show that with increase in Vf the Young’s modulus as well as thermal conductivity of single layer graphene sheets–Cu composites increases at a faster rate than that for carbon nanotube–Cu composite. For the same Vf, the Young’s modulus of single layer graphene sheets–Cu composite is higher than carbon nanotube–Cu composite.


Sign in / Sign up

Export Citation Format

Share Document