Integration of a mechanical energy storage system in a road pavement energy harvesting hydraulic device with mechanical actuation

2017 ◽  
Vol 9 (4) ◽  
pp. 044701 ◽  
Author(s):  
Francisco Duarte ◽  
Adelino Ferreira ◽  
Paulo Fael
2011 ◽  
Vol 12 ◽  
pp. 1002-1007 ◽  
Author(s):  
B. Abdi ◽  
M.M. Teymoori ◽  
H. Gholamrezaei ◽  
A.A. Nasiri

2014 ◽  
Vol 472 ◽  
pp. 374-378
Author(s):  
Ying Yuan Tian ◽  
Xu Jun Wang ◽  
Gong Xiang Ji

A micro-fluid turbine with mechanical energy storage system is designed and successfully tested in laboratory. As energy supplement for deep ocean installations, this patent design solved the problem of difficult generating electricity in ultra-low speed flow. The conventional marine current turbine can hardly get start in flows with velocity lower than 0.5m/s, whereas the marine current speed is seldom higher than one knot in deep sea. By adding a mechanical energy storage system, the rotor of the micro-fluid turbine first captures the fluid kinetic energy from the ultra-low speed flow, and then the energy transferred to the mechanical energy storage system, in which a plane scroll spring is used to store the limited energy and drive the generator automatically when it has enough potential energy. Simulation and laboratory test show that this method has potential for power generating in low density ocean current environment.


1983 ◽  
Vol 61 (6) ◽  
pp. 1421-1431 ◽  
Author(s):  
John M. Gosline ◽  
Robert E. Shadwick

Elastic energy storage mechanisms have been shown to improve locomotory performance and efficiency in many animals. In this paper we consider the role of elastic energy storage in jet locomotion of the squid, Loligo opalescens. The jet is powered by the contraction of circular muscles in the mantle. In addition, the mantle contains a collagen fibre based energy storage system (the mantle "spring") which captures some of the mechanical energy produced by the circular muscles and then releases this energy to power the refilling of the mantle cavity. The mantle spring is constructed so that it stores energy from the circular muscles only at a time in the jet cycle when, by virtue of the cylindrical geometry of the mantle, the circular muscles are unable, to apply their full mechanical output to the generation of hydrodynamic thrust. Thus the mantle spring increases the utilization of the circular muscles, and our analysis indicates that these muscles are used at virtually 100% of their potential through the entire jet. Presumably this increase in muscle utilization improves the locomotory performance of the squid. Other swimming animals, such as fish, may obtain similar benefits if elastic energy storage systems are constructed to capture energy at a time in the swimming cycle when muscles can not apply their full output to the generation of useful hydrodynamic forces.


Sign in / Sign up

Export Citation Format

Share Document