mantle cavity
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 21)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Vol 140 (1) ◽  
Author(s):  
Giambattista Bello ◽  
Adrianne Deickert

AbstractMating was observed and described in captive individuals of Sepiola affinis, Sepiola intermedia and Sepietta obscura (Cephalopoda: Sepiolidae) collected in the Catalan Sea, western Mediterranean Sea. This is the first report of a mating event in S. intermedia; it is also the first detailed description of the mating behaviour for the other two species. The published literature on mating in Sepiolinae, which includes both cursory reports and in-depth descriptions of mating events, was thoroughly reviewed. In all, copulation has been examined in eight species belonging to four different genera, namely, Eumandya, Euprymna, Sepietta and Sepiola, starting from 1894 to the present. Common traits of the mating behaviour were detected among the studied sepioline species, so that a general five stages succession of actions is established to portray the mating progress in Sepiolinae: (A) female hovers by, male attention (it is discussed whether actual copulation is preceded by any courtship); (B) male approaches female from below; (C) male grasps female at the neck by its third arms, inserts its first arms in the female’s mantle cavity (the hectocotylised left arm is thus aligned with the bursa copulatrix), holds the female’s mantle by its second arms and positions itself and mate in the “parallel position”; (D) copulation and transfer of spermatophores from male to female (this stage may last from 3 min to 3 h); (E) mating dissolution. Mating occurs preferentially during the dark hours; it is described as violent and the female tries to escape the forceful grasp by the male; the male skin coloration turns darker. The similarity of the mating behaviour in all examined sepioline species is an evidence of both its evolution in harmony with their copulatory organs (hectocotylus and bursa copulatrix) and, seemingly, its common derivation to the whole Sepiolinae clade.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256745
Author(s):  
Noritaka Hirohashi ◽  
Noriyosi Sato ◽  
Yoko Iwata ◽  
Satoshi Tomano ◽  
Md. Nur E. Alam ◽  
...  

Sperm morphology is generally uniform within a species due to selective pressures that act to achieve better fertilization outcomes under postcopulatory competitive circumstances. Therefore, polyandry that intensifies post-mating sperm competition should constrain intraspecific sperm polymorphism. Contrary to this paradigm, we previously found that a polyandrous squid, Heterololigo bleekeri, produces dimorphic eusperm (flagellum length dimorphism; FLD), which is closely associated with alternative reproductive tactics (ARTs); large males (consorts) transfer their spermatophores inside the female’s mantle cavity, while small males (sneakers) do so outside the mantle. Thus, FLD was considered as the consequence of different insemination strategies that arise from different modes of sperm competition, sperm storage and the fertilization environment. However, in other squid species showing ARTs, the choice of mating behaviour is rather conditional (i.e., switching mating tactic between consorts and sneakers), which poses the question of whether sperm FLD could have evolved. Here, we investigated five species in the family Loliginidae that exhibit ARTs and found that all species showed sneaker-biased FLD. However, in a species with conditional ARTs, we found FLD rather ambiguous and the testicular somatic index to be nearly continuous among individuals at transitional state, suggesting that plasticity in mating behaviour compromises the disruptive selection on a sperm morphological trait.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11797
Author(s):  
David J. Peterman ◽  
Kathleen A. Ritterbush

Measuring locomotion tactics available to ancient sea animals can link functional morphology with evolution and ecology over geologic timescales. Externally-shelled cephalopods are particularly important for their central roles in marine trophic exchanges, but most fossil taxa lack sufficient modern analogues for comparison. In particular, phylogenetically diverse cephalopods produced orthoconic conchs (straight shells) repeatedly through time. Persistent re-evolution of this morphotype suggests that it possesses adaptive value. Practical lateral propulsion is ruled out as an adaptive driver among orthoconic cephalopods due to the stable, vertical orientations of taxa lacking sufficient counterweights. However, this constraint grants the possibility of rapid (or at least efficient) vertical propulsion. We experiment with this form of movement using 3D-printed models of Baculites compressus, weighted to mimic hydrostatic properties inferred by virtual models. Furthermore, model buoyancy was manipulated to impart simulated thrust within four independent scenarios (Nautilus-like cruising thrust; a similar thrust scaled by the mantle cavity of Sepia; sustained peak Nautilus-like thrust; and passive, slightly negative buoyancy). Each model was monitored underwater with two submerged cameras as they rose/fell over ~2 m, and their kinematics were computed with 3D motion tracking. Our results demonstrate that orthocones require very low input thrust for high output in movement and velocity. With Nautilus-like peak thrust, the model reaches velocities of 1.2 m/s (2.1 body lengths per second) within one second starting from a static initial condition. While cephalopods with orthoconic conchs likely assumed a variety of life habits, these experiments illuminate some first-order constraints. Low hydrodynamic drag inferred by vertical displacement suggests that vertical migration would incur very low metabolic cost. While these cephalopods likely assumed low energy lifestyles day-to-day, they may have had a fighting chance to escape from larger, faster predators by performing quick, upward dodges. The current experiments suggest that orthocones sacrifice horizontal mobility and maneuverability in exchange for highly streamlined, vertically-stable, upwardly-motile conchs.


2021 ◽  
pp. 99-103
Author(s):  
Bukina

Trichinosis is a dangerous anthropozoonotic disease caused by a nematode of the genus Trichinella. Being polyhostal, Trichinella is recorded in more than 150 species of animals, including marine mammals. While the circulation mechanism in terrestrial animal species is well-studied and has a logical explanation, the ways of infection of marine mammals remain unexplored in many respects up to the present. Among marine mammals, trichinosis is most common in walruses with the prevalence of 1.5% (Bukina L.A., 2015). The main sources of trichinosis infection for benthophagous walruses are probably their most important prey items, amphipods and bivalve mollusks. The purpose of the present paper was to study the role of bivalves in the transmission of infective material to a potential host. In the experimental infection, decapsulated trichinella larvae isolated from the muscle tissue of cage-kept arctic foxes were used. Trichinella larvae were isolated by the method of trichinelloscopy and digestion of muscle tissue in artificial gastric juice. It was found that the filter feeding structure of mussels does not let trichinella pass into the intestine. However, larvae trapped in the mantle cavity are filtered out and removed as pseudofaeces through the excurrent siphon to the environment. At the same time, they remain viable for 113 hours. The most invasive and viable were trichinella isolated from pseudofaeces and wash off from the mantle cavity (mantle complex) within 30 to 70 hours. The bio-assays performed on white outbred mice were positive. Therefore, mussels can be direct or indirect sources of the invasion. Taking into account that walruses can eat more than 3,000 mollusks in one feeding, the probability of infection increases significantly.


2021 ◽  
Vol 5 (1) ◽  
pp. 7-13
Author(s):  
Delianis Pringgenies ◽  
Dafit Ariyanto

The light organ is an electronic device that can emit light. However, there are light organs in animals that can produce light naturally. Loligo duvaucelii is a species whose biolumenesence comes from fluorescent bacteria that live in symbiosis in its ink sacs. This study aims to determine in detail the construction of the squid light organ using the transmission electron microscopy (TEM) method. The results showed that this type of squid has a pair of light organs attached to the dorso-lateral ink sac. The light organ is spherical, some are found on the surface and some are embedded on the wall of the ink sac. It consists of a lens that is located on the outer surface of the ink sac, and a sac of light organs (embedded on the wall of the ink sac) with channels connecting the pocket to the mantle cavity. The wall of the sac of the light organ consists of three layers, namely the innermost layer which is multi-fold with microvilli on the cell surface and between the folds of the sac populated with bacteria, the dense layer that acts as a reflector, and the pigment layer. Cilia are observed on the surface of the duct connecting the sac with the mantle cavity. This study concluded that the construction of the squid light organ has a convex-shaped lens structure and is muscular. In the pockets of light organs, a dense population of bacteria is found. The reflector consists of many layers, and the pigment layer contains many granules.


2021 ◽  
Author(s):  
J. Anton Morath ◽  
Stefan Fischer ◽  
Leonie Hannig ◽  
Simon Schwarz ◽  
Rita Triebskorn ◽  
...  

Abstract A hallmark in snails’ anatomy is the conspicuous crossing of the pleurovisceral nerve cords present in all but the most derived gastropod clades. This feature is called streptoneury and hitherto near-universally believed to derive from the process of torsion which is, ontogenetically, visible by a 180° rotation of the visceral sac relative to the cephalopodium, being also responsible for the formation of a cranially bent gut and the location of gills in a mantle cavity that opens to the anterior. However, the mechanical link between the ontogenetic rotation of the visceropallium and streptoneury has never been demonstrated directly. After suppressing ontogenetic torsion in the freshwater apple snail Marisa cornuarietis, we could show in a 3D reconstruction based on serial sectioning that the nervous system of the non-torted snail almost identically mirrored the classical organization of a normally developed individual and showed all features of streptoneury in this species. Furthermore, confocal laser scanning microscopy revealed the pleurovisceral cords not to be fully shaped after completion of ontogenetic torsion. We therefore conclude that, ontogenetically, and potentially also phylogenetically, torsion is not an implicit prerequisite for streptoneury, thereby fundamentally challenging a century-old ‘certainty’ in molluscan developmental biology and evolution.


2021 ◽  
Vol 140 (1) ◽  
Author(s):  
Christian Klug ◽  
Günter Schweigert ◽  
Helmut Tischlinger ◽  
Helmut Pochmann

AbstractAmmonoid soft parts have been rarely described. Here, we document the soft parts of a perisphinctid ammonite from the early Tithonian of Wintershof near Eichstätt (Germany). This exceptional preservation was enabled by the special depositional conditions in the marine basins of the Solnhofen Archipelago. Here, we document this find and attempt to homologize its parts with various organs such as the digestive tract, reproductive organs, the mantle cavity with gills, and the hyponome, with differing degrees of reservation. Alternative interpretations are also taken into account. We suggest that the soft parts were separated from the conch either taphonomically (following necrolytical processes affecting the attachment structures) or during a failed predation, where a predator (fish or coleoid) removed the soft parts from the conch but then dropped them. This find is interesting because it adds to the knowledge of ammonite anatomy, which is normally hidden in the conch. The reproductive organs show traces of what might have been spermatophores, thus supporting the hypothesis that the microconchs represented the males.


2020 ◽  
pp. 1-15
Author(s):  
Zhiwei Yuan ◽  
Wen Guo ◽  
Dan Lyu ◽  
Yuanlin Sun

Abstract The filter-feeding organ of some extinct brachiopods is supported by a skeletal apparatus called the brachidium. Although relatively well studied in Atrypida and Athyridida, the brachidial morphology is usually neglected in Spiriferida. To investigate the variations of brachidial morphology in Spiriferida, 65 species belonging to eight superfamilies were analyzed. Based on the presence/absence of the jugal processes and normal/modified primary lamellae of the spiralia, four types of brachidium are recognized. Type-I (with jugal processes) and Type-II (without jugal processes), both having normal primary lamellae, could give rise to each other by losing/re-evolving the jugal processes. Type-III, without jugal processes, originated from Type-II through evolution of the modified lateral-convex primary lamellae, and it subsequently gave rise to Type-IV by evolving the modified medial-convex primary lamellae. The evolution of brachidia within individual evolutionary lineages must be clarified because two or more types can be present within a single family. Type-III and Type-IV are closely associated with the prolongation of the crura, representing innovative modifications of the feeding apparatus in response to possible shift in the position of the mouth towards the anterior, allowing for more efficient feeding on particles entering the mantle cavity from the anterior gape. Meanwhile, the modified primary lamellae adjusted/regulated the feeding currents. The absence of spires in some taxa with Type-IV brachidium might suggest that they developed a similar lophophore to that in some extant brachiopods, which can extend out of the shell.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ivan N. Bolotov ◽  
Anna L. Klass ◽  
Ekaterina S. Konopleva ◽  
Yulia V. Bespalaya ◽  
Mikhail Yu. Gofarov ◽  
...  

AbstractParasites and symbionts of freshwater mussels are poorly understood, although a diverse assemblage of mussel-associated leeches (Glossiphoniidae) was recently described. Here, we report on the discovery of a fish leech (Piscicolidae) in the mantle cavity of the freshwater mussel Cristaria plicata (Unionidae) in the Russian Far East. It is the first member of this leech family being associated with freshwater molluscs. This leech does not match any known genus and species both morphologically and genetically, and is described here as Alexandrobdella makhrovigen. & sp. nov. It uses mussels as shelter (and probably as a secondary host), while the Amur catfish Silurus asotus (Siluridae) seems to be the primary host. These novel findings indicate that mussel-associated leech assemblage contains at least one piscicolid species. Our fossil-calibrated phylogeny suggests that the crown group of Piscicolidae was originated in the Early Cretaceous. This primarily marine family shares at least five independent colonization events into freshwater environments.


Biology Open ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. bio054585
Author(s):  
Carly A. York ◽  
Ian K. Bartol ◽  
Paul S. Krueger ◽  
Joseph T. Thompson

ABSTRACTThroughout their lives, squids are both predators and prey for a multitude of animals, many of which are at the top of ocean food webs, making them an integral component of the trophic structure of marine ecosystems. The escape jet, which is produced by the rapid expulsion of water from the mantle cavity through a funnel, is central to a cephalopod's ability to avoid predation throughout its life. Although squid undergo morphological and behavioral changes and experience remarkably different Reynolds number regimes throughout their development, little is known about the dynamics and propulsive efficiency of escape jets throughout ontogeny. We examine the hydrodynamics and kinematics of escape jets in squid throughout ontogeny using 2D/3D velocimetry and high-speed videography. All life stages of squid produced two escape jet patterns: (1) ‘escape jet I’ characterized by short rapid pulses resulting in vortex ring formation and (2) ‘escape jet II’ characterized by long high-volume jets, often with a leading-edge vortex ring. Paralarvae exhibited higher propulsive efficiency than adult squid during escape jet ejection, and propulsive efficiency was higher for escape jet I than escape jet II in juveniles and adults. These results indicate that although squid undergo major ecological transitions and morphology changes from paralarvae to adults, all life stages demonstrate flexibility in escape jet responses and produce escape jets of surprisingly high propulsive efficiency.This article has an associated First Person interview with the first author of the paper.


Sign in / Sign up

Export Citation Format

Share Document