Nonadiabatic dynamics simulations on internal conversion and intersystem crossing processes in gold(i) compounds

2018 ◽  
Vol 149 (4) ◽  
pp. 044301 ◽  
Author(s):  
Xiang-Yang Liu ◽  
Zi-Wen Li ◽  
Wei-Hai Fang ◽  
Ganglong Cui
2019 ◽  
Vol 21 (1) ◽  
pp. 57-69 ◽  
Author(s):  
Felix Plasser ◽  
Sandra Gómez ◽  
Maximilian F. S. J. Menger ◽  
Sebastian Mai ◽  
Leticia González

A highly efficient protocol for performing nonadiabatic dynamics simulations is implemented and applied to ultrafast internal conversion and intersystem crossing in various molecules.


2016 ◽  
Vol 18 (9) ◽  
pp. 6931-6945 ◽  
Author(s):  
Jun Cao ◽  
Zhi-Zhong Xie

The geometrical constraint of the ring gives rise to a smaller spin–orbital coupling in the singlet–triplet crossing region, resulting in a lower intersystem crossing rate.


2021 ◽  
Author(s):  
Marc Alías Rodríguez ◽  
Coen De Graaf ◽  
Miquel Huix-Rotllant

Most aromatic ketones containing first-row elements undergo unexpectedly fast intersystem crossing in few tens of picosecond and a quantum yield close to unity. Among them, xanthone (9H-xanthen-9-one) possesses one of the fastest intersystem crossing rates of ~1.5 ps, despite containing only first-row elements. The exact mechanism of this unusually fast singlet-triplet transition is still under debate. Here, we perform a complete wavepacket dynamics simulation of the internal conversion and intersystem crossing reactions of xanthone in the gas phase. We show that xanthone follows El-Sayed's rule for intersystem crossing. From the second singlet excited state, the mechanism is sequential: (i) an internal conversion between singlets 1pipi*-1npi* (~0.14 fs), (ii) an intersystem crossing 1npi*-3pipi* (~1.8 ps), and (iii) an internal conversion between triplets 3pipi*-3npi* (~27 ps). Each transfer finds its origin in a barrierless access to electronic state intersections. These intersections are close to minimum energy structures, allowing for an efficient radiationless transition from 1pipi* to 3npi*.


Author(s):  
Bin-Bin Xie ◽  
Bo Long Liu ◽  
Xiu-Fang Tang ◽  
Diandong Tang ◽  
Lin Shen ◽  
...  

In the present work, the quantum trajectory mean-field approach, which is able to overcome the overcoherence problem, was generalized to simulate internal conversion and intersystem crossing processes simultaneously. The photoinduced...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Valeriu Scutelnic ◽  
Shota Tsuru ◽  
Mátyás Pápai ◽  
Zheyue Yang ◽  
Michael Epshtein ◽  
...  

AbstractElectronic relaxation in organic chromophores often proceeds via states not directly accessible by photoexcitation. We report on the photoinduced dynamics of pyrazine that involves such states, excited by a 267 nm laser and probed with X-ray transient absorption spectroscopy in a table-top setup. In addition to the previously characterized 1B2u (ππ*) (S2) and 1B3u (nπ*) (S1) states, the participation of the optically dark 1Au (nπ*) state is assigned by a combination of experimental X-ray core-to-valence spectroscopy, electronic structure calculations, nonadiabatic dynamics simulations, and X-ray spectral computations. Despite 1Au (nπ*) and 1B3u (nπ*) states having similar energies at relaxed geometry, their X-ray absorption spectra differ largely in transition energy and oscillator strength. The 1Au (nπ*) state is populated in 200 ± 50 femtoseconds after electronic excitation and plays a key role in the relaxation of pyrazine to the ground state.


2021 ◽  
Vol 154 (11) ◽  
pp. 110901
Author(s):  
Xuezhi Bian ◽  
Yanze Wu ◽  
Hung-Hsuan Teh ◽  
Zeyu Zhou ◽  
Hsing-Ta Chen ◽  
...  

2016 ◽  
Vol 18 (1) ◽  
pp. 403-413 ◽  
Author(s):  
Bin-Bin Xie ◽  
Shu-Hua Xia ◽  
Xue-Ping Chang ◽  
Ganglong Cui

Sequential vs. concerted S1 relaxation pathways.


Sign in / Sign up

Export Citation Format

Share Document