Structural and optical characterization of NiSe film grown by screen-printing method

Author(s):  
Kapil Sharma ◽  
D. K. Sharma ◽  
D. K. Dwivedi ◽  
Vipin Kumar
2006 ◽  
Vol 45 ◽  
pp. 200-204
Author(s):  
Dong Xiang Zhou ◽  
Huan Liu ◽  
Shu Ping Gong

Copper-doped tin oxide nanopowder has been synthesized via the hydrothermal route, in which pure metallic Sn, diluted nitric acid solution and Cu(NO3)2 are used as the starting materials. The hydrothermal treatment at about 200°C for 10 h results in rutile crystalline SnO2 particles with a narrow size distribution typically in the range of 3~6 nm. The average crystallite size of 5 wt% CuO-doped SnO2 particles remains smaller than 12.5 nm even after annealing at 800°C. The evaluation of the sensitive properties of the synthesized powder with various amount of CuO doping is conducted on the thick-film samples fabricated by screen-printing method. The high sensitivity toward H2S as shown by the sensor test results show the possibility of using this material for gas sensor fabrication.


2021 ◽  
Vol 1053 (1) ◽  
pp. 012012
Author(s):  
Iga Purwitasari Aningratri ◽  
Nazriati Nazriati ◽  
Dani Gustaman Syarif

2007 ◽  
Vol 124-126 ◽  
pp. 663-666 ◽  
Author(s):  
Sung Gap Lee ◽  
Sang Man Park ◽  
Young Jae Shim ◽  
Young Chul Rhee

PZT(70/30) powder was prepared by a sol-gel method and PZT thick films were fabricated by the screen-printing method on the alumina substrates. The coating and drying procedure was repeated 4 times. And then the PZT(30/70) precusor solution was spin-coated on the PZT thick films. A concentration of a coating solution was 0.5 mol/L and the number of coating was varied from 0 to 6. The porosity decreased and the grain size increased with increasing the number of coatings. The thickness of the PZT-6(6: number of coatings) films was about 60~65μm. All PZT thick films showed the typical XRD patterns of a typical perovskite polycrystalline structure. The relative dielectric constant of the PZT-6 thick film was 540. The remanent polarization and coercive field of the PZT-6 film were 23.6 μC /cm2, 12.0 kV/cm, respectively.


Sign in / Sign up

Export Citation Format

Share Document