Tunable in-plane topologically protected edge waves in continuum Kagome lattices

2018 ◽  
Vol 124 (16) ◽  
pp. 164903 ◽  
Author(s):  
E. Riva ◽  
D. E. Quadrelli ◽  
G. Cazzulani ◽  
F. Braghin
Keyword(s):  
2021 ◽  
Vol 224 ◽  
pp. 108735
Author(s):  
Qiuyi Sun ◽  
Xiaojing Niu
Keyword(s):  

2021 ◽  
Vol 919 ◽  
Author(s):  
X. Shao ◽  
P. Wilson ◽  
J.B. Bostwick ◽  
J.R. Saylor

Abstract


Author(s):  
Y. Ciriano ◽  
A. Falqués ◽  
M. A. Losada
Keyword(s):  

1981 ◽  
Vol 5 ◽  
pp. 35-49 ◽  
Author(s):  
James T. Kirby ◽  
Robert A. Dalrymple ◽  
Philip L.-F. Liu
Keyword(s):  

1978 ◽  
Vol 1 (16) ◽  
pp. 25
Author(s):  
Robert King ◽  
Ronald Smith

Weak nonlinear interactions in water of non-constant depth between an incident wave, a side-band incident wave and a relatively low frequency trapped wave are shown to lead to the generation of the trapped wave. Three situations are considered in detail: edge waves in a wide rectangular basin, progressive edge waves on a straight beach, and standing waves in a narrow wave tank.


1976 ◽  
Vol 1 (15) ◽  
pp. 85 ◽  
Author(s):  
Michael K. Gaughan ◽  
Paul D. Komar

A series of wave basin experiments were undertaken to better understand the selection of groin spacings and lengths. Rather than obtaining edge waves with the same period as the normal incident waves, subharmonic edge waves were produced with a period twice that of the incoming waves and a wave length equal to the groin spacing. Rip currents were therefore not formed by the interactions of the synchronous edge waves and normal waves as proposed by Bowen and Inman (1969). Rips were present in the wave basin but their origin is uncertain and they were never strong enough to cause beach erosion. The generation of strong subharmonic edge waves conforms with the work of Guza and Davis (1974) and Guza and Inman (1975). The subharmonic edge waves interacted with the incoming waves to give an alternating sequence of surging and collapsing breakers along the beach. Their effects on the swash were sufficient to erode the beach in some places and cause deposition in other places. Thus major rearrangements of the sand were produced between the groins, but significant erosion did not occur as had been anticipated when the study began. By progressively decreasing the length of the submerged portions of the groins, it was found that the strength (amplitude) of the edge waves decreases. A critical submerged groin length was determined whereby the normally incident wave field could not generate resonant subharmonic edge waves of mode zero with a wavelength equal to the groin spacing. The ratio of this critical length to the spacing of the groins was found in the experiments to be approximately 0.15 to 0.20, and did not vary with the steepness of the normal incident waves.


1982 ◽  
Vol 21 (4) ◽  
pp. 729 ◽  
Author(s):  
Martin E. Smithers ◽  
Theodore C. Salvi ◽  
Gregory C. Dente

Sign in / Sign up

Export Citation Format

Share Document