constant depth
Recently Published Documents


TOTAL DOCUMENTS

368
(FIVE YEARS 38)

H-INDEX

36
(FIVE YEARS 2)

Algorithmica ◽  
2022 ◽  
Author(s):  
Swapnam Bajpai ◽  
Vaibhav Krishan ◽  
Deepanshu Kush ◽  
Nutan Limaye ◽  
Srikanth Srinivasan

Author(s):  
Mehmet A Erden ◽  
Mahir Akgün

In this work, it was investigated the effect of molybdenum (Mo) addition on machinability, mechanical properties, and microstructure of Cr steels produced by using powder metallurgy method. Tensile and hardness experiments were applied to define the mechanical properties of the produced Cr-PM steels. The machining experiments have been also performed without coolant on a CNC vertical machining center at three different cutting speeds (150, 210, and 270 m/min), two different feed rates (0.4 and 0.8 mm/tooth), and constant depth of cut (0.5 mm). The machinability of the alloys was evaluated in regard to surface roughness (Ra) and tool wear (Vb). The results indicated that that Cr-PM steel with 5% Mo addition by weight had the highest yield, tensile strength, and hardness, and the best surface quality was obtained in this sample in terms of surface roughness. However, according to Vb measurement results, the cutting performance of the cutting inserts wasnegative affected by MoC(N), CrC(N), and MoCrC(N) precipitates formed in the microstructure of PM steel.


2021 ◽  
Vol 13 (23) ◽  
pp. 4897
Author(s):  
Ilaria Catapano ◽  
Carlo Noviello ◽  
Francesco Soldovieri

The paper proposes an analytical study regarding airborne radar imaging performances and accounts for a down-looking radar system moving along parallel lines far, in terms of probing wavelength, from the investigated domain and collecting multi-frequency and multi-monostatic data. The imaging problem is formulated in a constant depth plane by exploiting the Born approximation. Hence, a linear inverse scattering problem is faced by considering both the Adjoint and the Truncated Singular Value Decomposition reconstruction schemes. Analytical and simulated results are provided to state how the achievable performances depend on the measurement configuration. These results are of practical usefulness because, in operative conditions, it is unfeasible to plan a flight grid made up by a high number of closely (in terms of probing wavelength) spaced lines. Hence, the understanding of how the availability of under-sampled data affects the radar imaging allows for a trade-off between operative data collection constrains and reliable reconstructions of the scenario under test.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1330
Author(s):  
Sylvio Freitas ◽  
Frank Harms ◽  
Bernd Leitl

With the aim of ascertaining the effects of the widths (A) of valleys on near-surface turbulence, flows over an isolated symmetric three-dimensional valley of constant depth (H) and slopes are characterized in a large-boundary-layer wind tunnel. Starting at A = 4H, valley widths were systematically varied to A = 12H with constant increments of 2H. High-resolution laser-Doppler velocimetry measurements were made at several equivalent locations above each of the resulting valley geometries and compared with data from undisturbed flows over flat terrain. Flow separation caused by the first ridges generated inner-valley recirculation bubbles with lengths dependent on the valley widths. Secondary recirculation zones were also observed downstream from the crests of the second ridges. Results show that the width modifications exert the strongest effects on turbulence within the valleys and the vicinities of the second ridges. Above these locations, maximal magnitudes of turbulence are generally found for the larger width geometries. Furthermore, lateral turbulence overpowers the longitudinal counterparts nearest to the surface, with maximal gains occurring for the smaller widths. Our data indicate that valley widths are impactful on near-surface flows and should be considered together with other more established geometric parameters of influence.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5644
Author(s):  
Mateu Colom ◽  
Javier Rodríguez-Aseguinolaza ◽  
Arantza Mendioroz ◽  
Agustín Salazar

We present a complete characterization of the width and depth of a very narrow fatigue crack developed in an Al-alloy dog bone plate using laser-spot lock-in thermography. Unlike visible micrographs, which show many surface scratches, the thermographic image clearly identifies the presence of a single crack about 1.5 mm long. Once detected, we focus a modulated laser beam close to the crack and we record the temperature amplitude. By fitting the numerical model to the temperature profile across the crack, we obtain both the width and depth simultaneously, at the location of the laser spot. Repeating the process for different positions of the laser spot along the crack length, we obtain the distribution of the crack width and depth. We show that the crack has an almost constant depth (0.7 mm) and width (1.5 µm) along 0.7 mm and features a fast reduction in both quantities until the crack vanishes. The results prove the ability of laser-spot lock-in thermography to fully characterize quantitatively narrow cracks, even below 1 µm.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4797
Author(s):  
Antoine Lebon ◽  
Annie-Claude Perez ◽  
Claude Jauffret ◽  
Dann Laneuville

This paper deals with the estimation of the trajectory of a target in constant velocity motion at an unknown constant depth, from measurements of conical angles supplied by a linear array. Sound emitted by the target does not necessarily navigate along a direct path toward the antenna, but can bounce off the sea bottom and/or off the surface. Observability is thoroughly analyzed to identify the ghost targets before proposing an efficient way to estimate the trajectory of the target of interest and of the ghost targets when they exist.


2021 ◽  
Author(s):  
Mario Guisasola

<p>The Von Mises, Monocontentio and Bicontentio footbridges are three parameterized metal bridge whose main structural characteristics are their variable depth depending on the applied stress and the embedding of abutments. Its use is considered suitable for symmetrical or asymmetrical topographies with slopes or vertical walls on one or both edges. The footbridges include spans spaced apart by 20 to 66 meters, and are between 2 to 4.5 meters wide.</p><p>Its design is based on five basic concepts: integration in the geometry of the environment; continuous search for simplicity; design based on a geometry that emanates from structural behavior; unitary and round forms; and long- lasting details.</p><p>The structural behavior of these prototypes has been compared with three types of constant-depth metal beams: the bridge simply supported, and the bridge embedded on one or both sides.</p><p>The embedding of abutments, and the adoption of a variation of depth adapted to the bending moments diagrams, allow for more efficient and elegant forms which are well-adapted to the boundary conditions.</p>


2021 ◽  
Author(s):  
Mohammadreza Sookhaklari

Abrasive jet micromachining (AJM) uses a jet of high-speed particles to erode a wide variety of materials. Given a set of process parameters, surface evolution models capable of predicting the shape of straight, constant-depth channels in a wide variety of materials are well-established. This dissertation presents novel methods for solving the unaddressed more challenging and industrially relevant inverse problem of determining the process parameters required to machine a particular user-specified feature topography. Since the air driven jet used in AJM is divergent, the edges of the desired features are usually defined using a mask which is attached to the surface of the target material. This dissertation presents alternate techniques using stationary or moving shadow masks that can be moved over the surface and maskless techniques, in order to allow direct writing of desired features on the surface. A mathematical framework is then introduced to determine the direct writing source velocity function and path required to create a desired shallow topography. It is also shown how the methodology can be used with existing surface evolution models to predict the feature shape at any depth. The methodologies are demonstrated to work well for the AJM of constant depth micro-channels with user-specified cross-sectional shape, gradient etched micro-channels with specified texture along their length, and pockets with texture in two perpendicular directions. Finally, a new technique is introduced that utilizes a rotating patterned mask in order to control the AJM erosive footprint size and shape. Models for predicting the rotating mask pattern required to create virtually any desired footprint are presented, and experimentally verified for symmetric and asymmetric W-shaped, trapezoidal and wedge shaped footprints.


2021 ◽  
Author(s):  
Mohammadreza Sookhaklari

Abrasive jet micromachining (AJM) uses a jet of high-speed particles to erode a wide variety of materials. Given a set of process parameters, surface evolution models capable of predicting the shape of straight, constant-depth channels in a wide variety of materials are well-established. This dissertation presents novel methods for solving the unaddressed more challenging and industrially relevant inverse problem of determining the process parameters required to machine a particular user-specified feature topography. Since the air driven jet used in AJM is divergent, the edges of the desired features are usually defined using a mask which is attached to the surface of the target material. This dissertation presents alternate techniques using stationary or moving shadow masks that can be moved over the surface and maskless techniques, in order to allow direct writing of desired features on the surface. A mathematical framework is then introduced to determine the direct writing source velocity function and path required to create a desired shallow topography. It is also shown how the methodology can be used with existing surface evolution models to predict the feature shape at any depth. The methodologies are demonstrated to work well for the AJM of constant depth micro-channels with user-specified cross-sectional shape, gradient etched micro-channels with specified texture along their length, and pockets with texture in two perpendicular directions. Finally, a new technique is introduced that utilizes a rotating patterned mask in order to control the AJM erosive footprint size and shape. Models for predicting the rotating mask pattern required to create virtually any desired footprint are presented, and experimentally verified for symmetric and asymmetric W-shaped, trapezoidal and wedge shaped footprints.


Sign in / Sign up

Export Citation Format

Share Document