Effect of steel fibre content with high strength fibre reinforced concrete on compressive behaviour

2018 ◽  
Author(s):  
N. A. Hamiruddin ◽  
R. A. Razak ◽  
K. Muhammad ◽  
M. Z. A. M. Zahid
2014 ◽  
Vol 5 (1) ◽  
pp. 21-33
Author(s):  
I. Kovács

Abstract The present paper of a series deals with the experimental characterisation of compressive strength and compressive behaviour (stress-strain relationship) of different structural concrete containing different volume of steel fibre reinforcement (0 V%, 0.5V%, 1.0V%, 75 kg/m3, 150 kg/m3) and different configuration of steel fibres (crimped, hooked-end). Compressive tests were carried out on standard cube (150 mm × 150 mm × 150 mm) and cylinder (Ø = 150 mm, l = 300 mm) specimens considering random fibre orientation. Since the fibre orientation may significantly affect the compressive behaviour, test series were also performed on cylinders (Ø = 70 mm, l = 100 mm) drilled out of fibre reinforced concrete beams and prisms (100 mm × 100 mm × 240 mm) sawn out of steel fibre reinforced deep beams. Throughout the tests stress-strain relationships were registered on the standard cube and cylinder specimens as well. In conclusion, behaviour of steel fibre reinforced concrete was examined in compression taking into consideration different experimental parameters such as fibre content, type of fibres, fibre configuration, fibre orientation, size of specimens (size effect) and concrete mixture.


2007 ◽  
Vol 15 (7) ◽  
pp. 569-578 ◽  
Author(s):  
Jong-Pil Won ◽  
Chan-Gi Park ◽  
Hwang-Hee Kim ◽  
Sang-Woo Lee ◽  
Cheol Won

Current design trends for structures require the increased use of high-strength concrete, which has a compressive strength of over 80 MPa. Its enhanced strength, however, leads to brittle failure problems, which have been resolved by adding steel fibres. Fibre-reinforced polymer (FRP) is actively being studied to resolve the corrosion problems encountered with steel reinforcing bars in concrete structures exposed to adverse environmental conditions. In this study, we experimentally evaluated the bond behaviour of FRP reinforcing bars in high-strength steel fibre-reinforced concrete. A high-strength concrete mix was created with a target strength of over 80 MPa, and steel fibre was added. The FRP reinforcing bars had an increased pullout load with a slow gradient, and the slope of the pullout load reduction curve remained small after the maximum pullout load was reached. In addition, the bond strength increased as steel fibre was added to the FRP reinforcing bar.


Sign in / Sign up

Export Citation Format

Share Document