Mechanical behaviour of thermally damaged high-strength steel fibre reinforced concrete

10.1617/14175 ◽  
2005 ◽  
Vol 38 (277) ◽  
pp. 335-342 ◽  
Author(s):  
G. M. Giaccio
2007 ◽  
Vol 15 (7) ◽  
pp. 569-578 ◽  
Author(s):  
Jong-Pil Won ◽  
Chan-Gi Park ◽  
Hwang-Hee Kim ◽  
Sang-Woo Lee ◽  
Cheol Won

Current design trends for structures require the increased use of high-strength concrete, which has a compressive strength of over 80 MPa. Its enhanced strength, however, leads to brittle failure problems, which have been resolved by adding steel fibres. Fibre-reinforced polymer (FRP) is actively being studied to resolve the corrosion problems encountered with steel reinforcing bars in concrete structures exposed to adverse environmental conditions. In this study, we experimentally evaluated the bond behaviour of FRP reinforcing bars in high-strength steel fibre-reinforced concrete. A high-strength concrete mix was created with a target strength of over 80 MPa, and steel fibre was added. The FRP reinforcing bars had an increased pullout load with a slow gradient, and the slope of the pullout load reduction curve remained small after the maximum pullout load was reached. In addition, the bond strength increased as steel fibre was added to the FRP reinforcing bar.


Sign in / Sign up

Export Citation Format

Share Document