scholarly journals The minimum water curing recovery time after burning of aluminium fiber light weight concrete (with alwa as coarse aggregate) modulus elasticity

2019 ◽  
Author(s):  
Antonius Mediyanto ◽  
Endah Safitri ◽  
Wibowo ◽  
Johannes Berchman Irawan Sunu Widagdo
2019 ◽  
Vol 8 (4) ◽  
pp. 8213-8216 ◽  

The study deals with the usage of perforated foam of various percentages to that of coarse aggregate to produce light weight concrete. With the day to day increase in industries and civilization’s expansion it has become very much necessary to produce structures with proficiently lesser weight. Its usage has become more proficient in construction of building in earthquake prone areas. This experimental investigation deals with the study of strength parameters of light weight concrete by performing various strength test and its various behavior s such as compression, tensile and flexure are studied by adding preformed foam at various proportions of 0%, 2%, 5%, 10%, 20% and 40%. All these strength parameter test are performed on 7th day, 14th day and 28th day respectively from day of casting


The density of concrete less than that of nominal concrete achieved by any means is referred as Light weight concrete. Circulated air through Concrete, Light Weight Aggregate Concrete, Foamed Concrete are different types of Light weight concrete. In this research study, the density of the concrete has been reduced by replacing the coarse aggregate by the pumice stone as light weight coarse aggregate. The major advantage of this study is to reduce the risk of seismic damages of the structure by reducing the self weight of the structure. The decrease in dead load of structure because of the utilization of LWC additionally brings about reduction in the cross segment of other auxiliary individuals such as beam, column and foundation. The pumice stones have huge number of voids and have moderately higher warm protection than the ostensible aggregates. The objective of this research is to obtain light weight concrete having low unit weight and an optimum compressive strength. The Nominal concrete and the light weight concrete is prepared and the tests were led to decide the mechanical properties and compressive quality, its flexural capacity in beams


2018 ◽  
Vol 7 (4.2) ◽  
pp. 1
Author(s):  
Pavithra A ◽  
Jerosia De Rose D

The main aim of this project is to develop a light weight concrete (LWC) by replacing the coarse aggregate with light weight expanded clay aggregate. The damage caused in LWC is less significant than conventional concrete and therefore the maintenance cost is also reduced. In order to understand the effect of light weight aggregate in concrete, conventional concrete of strength 30MPa was designed with the density of 2400 kg/m3. Then the natural coarse aggregates were replaced by clay aggregates and light weight concrete mix of density 1800 kg/m3 was designed to meet the desired strength requirement. As the density of the concrete tends to be lowered, the strength of the concrete may also tend to decrease. Hence suitable chemical and mineral admixture is to be incorporated in addition to significant water reduction to meet the strength requirement. Cement content kept constant in both the cases. The details of mechanical properties and durability properties of conventional and light weight concrete are reported in this paper. 


2018 ◽  
Vol 7 (3.12) ◽  
pp. 369 ◽  
Author(s):  
Madhumitha. S ◽  
Dhinakaran. G

Ceramic waste powder (CWP) is one waste material produced during cutting of ceramic tiles. CWP is rich in silica and alumina and is a fine material. Due to generation of more such waste it is mandatory to make use such material effectively in construction industry to minimize the disposal problem and also to reduce production of cement. Use of such material will minimize the carbon foot print in production stage of concrete. LECA is a light weight expanded clay aggregate could be used as substitute to natural coarse aggregate which is energy intensive. In this study, CWP is partially substituted for cement and LECA is partially substituted for natural coarse aggregate. CWP was used from 10 to 30% and LECA was used from 20 to 40%. All the mix combinations were subjected to durability studies namely sorptivity and porosity to study the effectiveness of enhancement on the performance of admixed light weight concrete. All the tests are performed as per ASTM standards. The durability performance of admixed concrete with ceramic waste and LECA aggregate are compared with results of conventional concrete.  


2018 ◽  
Vol 7 (3.12) ◽  
pp. 880
Author(s):  
V Vishnu Priya ◽  
P Bhuvaneswari ◽  
K Saravana Raja Mohan

The main aim of this study is to decrease the density and the dead load of the structure by using Light weight concrete (LWC). In this study Pumice aggregate was replaced with the conventional coarse aggregate. To enhance the strength of the concrete, cement was partially replaced with mineral admixtures, Ground Granulated Blast Slag (GGBS) and Metakaolin (MK).  The constant replacement level of cement with 30% GGBS and 15% Metakaolin was followed for all the mixes.  The natural aggregate has been replaced with pumice from 10% to 50% in the increment of 10%. A total of six combinations were cast. Hardened properties of the concrete were evaluated by conducting compressive strength (100 mm x 100 mm x 100 mm cubes), split tensile strength (cylinder of size 100 mm x 200 mm). In order to enhance the strength properties, cement has been replaced with GGBS and MK at certain replacement levels. The strength properties of light weight concrete samples and the conventional concrete samples were carried out. 


Sign in / Sign up

Export Citation Format

Share Document