disposal problem
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 22)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Bac Nguyen Quang ◽  
Duc Ta Hong

Oyster shells are considered as a byproduct or solid waste in mariculture or related food processing areas that face a major disposal problem at the landfill in coastal regions for sustainable development. Oyster shell is composed mostly of CaCO3, and it is also considered as a secondary source of calcium for various applications. In this paper, we extracted the calcium carbonate from oyster shell and used it as the source of calcium for the preparation of feed-grade monocalcium phosphate (MCP). The investigation shows that the heavy metal contents in oyster shells as well as in the synthesized MCP are extremely low, and the synthesized product meets the requirements for the European Union (EU) maximum limits applied for feed additives. The XRD, TG, and IR data analyses confirmed that the synthesized product is monocalcium phosphate.


2021 ◽  
pp. 0734242X2110555
Author(s):  
Rahul Baidya ◽  
Sadhan Kumar Ghosh

Acid tar sludge (ATS) is a hazardous waste generated in steel plants as a process by-product. ATS disposal is a major challenge for the steel industry around the world and specifically for developing nations. Hazardous wastes are usually disposed of in a dedicated expensive thermal treatment plant as per existing rules. Due to inadequate capacity of treating the total amount of hazardous waste, study of other economical options are required. India generates over 7.2 million metric tonnes of hazardous waste annually as per Central Pollution Control Board (CPCB), Government of India. Thus, co-processing of ATS in cement plant as an alternative means of disposal was studied based on a number of trials. During the five trials of 5 day each, feed rate of ATS was maintained at 0.4 tonne per hour (TPH) with an average coal feed rate of 10 TPH. No incremental variations in emissions were observed during the trials. The analysis further revealed insignificant impact on clinker quality, leach behaviour and cement property. The study also showed negligible impact on ambient air quality based on NO x, SO2, RSPM, SPM measurement at varying location around the cement plant. Thus, co-processing of hazardous waste such as ATS in cement plant can be an effective way to address the hazardous waste disposal problem in developing countries such as India.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012238
Author(s):  
Rishav Garg ◽  
Tinku Biswas ◽  
MD Danish Alam ◽  
Aniket Kumar ◽  
Anubhav Siddharth ◽  
...  

Abstract The production of sugarcane bagasse ash (SBA), glass fiber (GF) and ceramic dust (CD) in developing countries at very large scale usually poses a severe disposal problem. The purpose of this research is to determine whether these three waste products are suitable for improving the engineering characteristics of expanding soil. The study has been carried out by varying the content of SBA (0-20%), CD (0-20%) and GF (0-4%) in black cotton soil. Optimization was carried out to find out the composition of the ideal quaternary blend. The use of these materials was found to decrease the maximum dry density and swelling of soil with increase in optimum moisture content. In addition, the liquid limit was found to decline with increment in CBR and unconfined compressive strength. The study confirms the use of these waste materials as soil stabilizers in addition to provide a solution for waste reuse.


Author(s):  
Prasad Gajanan Sonar ◽  
Shejwal Neha Sanjay ◽  
Dorkhe Suraj Bhaskar

In the world full of crises, also the rising demand for PPE suits and masks would lead to another wave of biomedical waste disposition crises. The disposal of thrown away wastes causes a serious issue as the waste are most of the time are non- biodegradable and these are also not fit for incineration. Soil stabilization improves the engineering properties of the weak soil, by proper compaction and additional materials such as lime, concrete, but these materials are becoming expensive day by day, hence plastic by the composition of egg shell powder could enhance the properties and can be a sustainable replacement for lime, concrete, etc. as stabilizer. Through much experimental investigation it has been showed that plastic and egg shell powder can be used as an effective stabilizer with encountering waste disposal problem as well, along with the economical solution for stabilizing weak soil. This PPE stripes/shredding are known for its high strength, low cost, significantly less dangerous for the environment. The combined effect of PPE stripes/shredding along with egg shell powder can enhance engineering properties of soil.


2021 ◽  
Vol 7 (6) ◽  
pp. 427
Author(s):  
Harsh Kumar ◽  
Kanchan Bhardwaj ◽  
Ruchi Sharma ◽  
Eugenie Nepovimova ◽  
Natália Cruz-Martins ◽  
...  

Currently, the food and agricultural sectors are concerned about environmental problems caused by raw material waste, and they are looking for strategies to reduce the growing amount of waste disposal. Now, approaches are being explored that could increment and provide value-added products from agricultural waste to contribute to the circular economy and environmental protection. Edible mushrooms have been globally appreciated for their medicinal properties and nutritional value, but during the mushroom production process nearly one-fifth of the mushroom gets wasted. Therefore, improper disposal of mushrooms and untreated residues can cause fungal disease. The residues of edible mushrooms, being rich in sterols, vitamin D2, amino acids, and polysaccharides, among others, makes it underutilized waste. Most of the published literature has primarily focused on the isolation of bioactive components of these edible mushrooms; however, utilization of waste or edible mushrooms themselves, for the production of value-added products, has remained an overlooked area. Waste of edible mushrooms also represents a disposal problem, but they are a rich source of important compounds, owing to their nutritional and functional properties. Researchers have started exploiting edible mushroom by-products/waste for value-added goods with applications in diverse fields. Bioactive compounds obtained from edible mushrooms are being used in media production and skincare formulations. Furthermore, diverse applications from edible mushrooms are also being explored, including the synthesis of biosorbent, biochar, edible films/coating, probiotics, nanoparticles and cosmetic products. The primary intent of this review is to summarize the information related to edible mushrooms and their valorization in developing value-added products with industrial applications.


2020 ◽  
Vol 21 (24) ◽  
pp. 9678
Author(s):  
Katarína Mosnáčková ◽  
Alena Opálková Šišková ◽  
Angela Kleinová ◽  
Martin Danko ◽  
Jaroslav Mosnáček

The utilization of keratin waste in new materials formulations can prevent its environmental disposal problem. Here, novel composites based on biodegradable blends consisting of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB), and filled with hydrolyzed keratin with loading from 1 to 20 wt % were prepared and their properties were investigated. Mechanical and viscoelastic properties were characterized by tensile test, dynamic mechanical thermal analysis (DMTA) and rheology measurements. The addition of acetyltributyl citrate (ATBC) significantly affected the mechanical properties of the materials. It was found that the filled PLA/PHB/ATBC composite at the highest keratin loading exhibited similar shear moduli compared to the un-plasticized blend as a result of the much stronger interactions between the keratin and polymer matrix compared to composites with lower keratin content. The differences in dynamic moduli for PLA/PHB/ATBC blend filled with keratin depended extensively on the keratin content while loss the factor values progressively decreased with keratin loading. Softening interactions between the keratin and polymer matrix resulted in lower glass transitions temperature and reduced polymer chain mobility. The addition of keratin did not affect the extent of degradation of the PLA/PHB blend during melt blending. Fast hydrolysis at 60 °C was observed for composites with all keratin loadings. The developed keratin-based composites possess properties comparable to commonly used thermoplastics applicable for example as packaging materials.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Lihua Zhu ◽  
Zengmei Zhu

The application of recycled clay brick can not only solve the disposal problem of demolished solid waste but also reduce ecological environment damage caused by the excessive development of resources. Clay brick powder (CBP) exhibits pozzolanic activity and can be used as cement replacement. Recycled clay brick aggregate (RBA) can be used to substitute natural coarse aggregate. Recycled clay brick aggregate concrete (RBAC) can attain suitable strength and be used in the production of medium- and low-strength concrete. Clay brick waste as potential partial cement and aggregate replacement material is reviewed herein. Performances in terms of mechanical and durability-related properties of mortar and concrete are discussed. Understanding the properties of clay bricks is crucial to further research and applications.


2020 ◽  
Vol 12 (10) ◽  
pp. 4214
Author(s):  
Qingyue Wang ◽  
Nuerjiamali Tuohedi

Cotton is planted on a large scale in China, especially in the Xinjiang Region. A large amount of agricultural waste from cotton plants is produced annually, and currently poses a disposal problem. In this study the product after liquefaction of cotton stalk powder was mixed with diphenylmethane diisocyanate to prepare polyurethane foams. The effects of the liquefaction conditions on the properties of the polyols and polyurethane foams produced using cotton stalk were investigated. The optimal processing conditions for the liquefied product, considering the quality of the polyurethane foams, were studied as a function of the residue fraction. Bio-polyols with promising material properties were produced using liquefaction conditions of 150 °C, reaction time of 90 min, catalyst content of 3 wt.%, and 20 w/w% cotton stalk loading. We investigated the optimal processing conditions for producing bio-foam materials with mechanical properties comparable to those of petroleum-based foam materials. This study demonstrated the potential of cotton stalk agricultural waste for use as a feedstock for producing polyols via liquefaction. It was shown that polyethylene glycol 400 (PEG400) and glycerin can be used as alternative solvents for liquefaction of lignocellulosic biomass, such as cotton stalk, to produce bio-polyol and polyurethane foams.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1713 ◽  
Author(s):  
Alessandro Suardi ◽  
Francesco Latterini ◽  
Vincenzo Alfano ◽  
Nadia Palmieri ◽  
Simone Bergonzoli ◽  
...  

Pruning residues from olive groves represent an important biomass source. Until now, the management of pruning residue has generally represented a disposal problem rather than an opportunity for additional revenue. The main problem is the lack of a well-organized pruning biomass supply chain. In particular, harvesting is a key stage that influences the product quality, the type of logistics chain, and the economic sustainability of the pruning supply chain. The aim of the present paper was the evaluation of the machine performance of the Facma Comby TR200 towed shredder. The harvesting tests took place in Agios Konstantinos, Fthiotida, Central Greece. Two different experimental fields were used for the evaluation of this harvesting system; these fields were characterized by different slopes to check the convenience of using such a towed shredder on both hilly slopes and flat terrains. Analysis was conducted focusing on both the work productivity and costs. Moreover, an evaluation of the obtained hog fuel quality was performed. The Facma Comby TR200 showed good work performances on both flat (2.60 tdm·h−1) and hilly (2.74 tdm·h−1) land, even if a consistent influence of the pruning biomass yield on the work performances was reported. The biomass quality could be consistently improved by modifying the pick-up systems to avoid the collection of inert materials (soil and rocks). In fact, the analysis showed a high ash content in the comminuted material (4% dry basis). Finally, the economic aspects of this study’s results were in line with those reported in the literature. The applied harvesting system showed a cost equal to 29.88 and 16.59 €·tfm−1 on flat and hilly land, respectively.


Sign in / Sign up

Export Citation Format

Share Document