scholarly journals Influence of secondary flow corner vortex to boundary layer in a channel flow

2019 ◽  
Author(s):  
Daniel Duda ◽  
Jindřich Bém ◽  
Jiří Kovařík ◽  
Vitalii Yanovych ◽  
Václav Uruba

AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 2293-2301
Author(s):  
R. Benay ◽  
P. Berthouze ◽  
R. Bur


1988 ◽  
Vol 66 (7) ◽  
pp. 576-579
Author(s):  
G. T. Karahalios ◽  
C. Sfetsos

A sphere executes small-amplitude linear and torsional oscillations in a fluid at rest. The equations of motion of the fluid are solved by the method of successive approximations. Outside the boundary layer, a steady secondary flow is induced in addition to the time-varying motion.





Author(s):  
R. Pichler ◽  
Yaomin Zhao ◽  
R. D. Sandberg ◽  
V. Michelassi ◽  
R. Pacciani ◽  
...  

In low-pressure-turbines (LPT) around 60–70% of losses are generated away from end-walls, while the remaining 30–40% is controlled by the interaction of the blade profile with the end-wall boundary layer. Experimental and numerical studies have shown how the strength and penetration of the secondary flow depends on the characteristics of the incoming end-wall boundary layer. Experimental techniques did shed light on the mechanism that controls the growth of the secondary vortices, and scale-resolving CFD allowed to dive deep into the details of the vorticity generation. Along these lines, this paper discusses the end-wall flow characteristics of the T106 LPT profile at Re = 120K and M = 0.59 by benchmarking with experiments and investigating the impact of the incoming boundary layer state. The simulations are carried out with proven Reynolds-averaged Navier–Stokes (RANS) and large-eddy simulation (LES) solvers to determine if Reynolds Averaged models can capture the relevant flow details with enough accuracy to drive the design of this flow region. Part I of the paper focuses on the critical grid needs to ensure accurate LES, and on the analysis of the overall time averaged flow field and comparison between RANS, LES and measurements when available. In particular, the growth of secondary flow features, the trace and strength of the secondary vortex system, its impact on the blade load variation along the span and end-wall flow visualizations are analysed. The ability of LES and RANS to accurately predict the secondary flows is discussed together with the implications this has on design.



2021 ◽  
Author(s):  
Kazuki Yamamoto ◽  
Ryota Uehara ◽  
Shohei Mizuguchi ◽  
Masahiro Miyabe

Abstract High efficiency is strongly demanded for gas turbines to reduce CO2 emissions. In order to improve the efficiency of gas turbines, the turbine inlet temperature is being raised higher. In that case, the turbine blade loading is higher and secondary flow loss becomes a major source of aerodynamic losses due to the interaction between the horseshoe vortex and the strong endwall cross flow. One of the authors have optimized a boundary layer fence which is a partial vane to prevent cross-flow from pressure-side to suction-side between blade to blade. However, it was also found that installing the fence leads to increase another loss due to tip vortex, wake and viscosity. Therefore, in this paper, we focused on the endwall contouring and the positive effect findings from the boundary layer fence were used to study its optimal shape. Firstly, the relationship between the location of the endwall contouring and the internal flow within the turbine cascade was investigated. Two patterns of contouring were made, one is only convex and another is just concave, and the secondary flow behavior of the turbine cascade was investigated respectively. Secondly, the shape was designed and the loss reduction effect was investigated by using optimization method. The optimized shape was manufactured by 3D-printer and experiment was conducted using cascade wind tunnel. The total pressure distributions were measured and compared with CFD results. Furthermore, flow near the endwall and the internal flow of the turbine cascade was experimentally visualized. The internal flow in the case of a flat wall (without contouring), with a fence, and with optimized endwall contouring were compared by experiment and CFD to extract the each feature.



Author(s):  
Martin Sinkwitz ◽  
Benjamin Winhart ◽  
David Engelmann ◽  
Francesca di Mare

Abstract In this study the unsteady behavior of the boundary layers developing on a LPT stator profile and their effect on secondary flow patterns in a 1.5-stage turbine configuration are investigated under the influence of periodic inflow perturbations. The experimental setup previously employed to analyze the unsteady secondary flow in the stator wake has been enhanced by hotfilm sensor arrays placed on the stator profiles at different blade height positions to provide time-resolved data from within the passage. The turbine inflow is perturbed by periodically passing circular bars and a modified T106-profile has been considered for the blading. The modified profile, labeled as T106RUB, was developed for matching the transition and separation characteristics of the original T106 profile at low flow speeds, thus facilitating measurements to be taken in a large-scale test rig with its improved accessibility. The transition phenomena occurring in the profile boundary layers are investigated under both unperturbed and periodically perturbed inflow by means of spectral analysis, the semi-quantitative characterization of the wall-stress system and an evaluation of the statistic quantities. In particular, the periodic changes of the suction side boundary layer flow region towards the trailing edge are studied in detail. Furthermore, time-resolved hot-film measurements at different blade height positions facilitate a detailed comparison of the quasi two-dimensional mid-span profile flow and the near end wall profile flow which is subject to influence of secondary flow structures. These information are employed to assess to which extent the additional turbulence originating from the wakes affects the blade boundary layers and thus the secondary flow structures. Furthermore, the role of the perturbation frequency on the coupled system of boundary layers and secondary flow structures is evaluated.



Author(s):  
Tobias Schubert ◽  
Silvio Chemnitz ◽  
Reinhard Niehuis

Abstract A particular turbine cascade design is presented with the goal of providing a basis for high quality investigations of endwall flow at high-speed flow conditions and unsteady inflow. The key feature of the design is an integrated two-part flat plate serving as a cascade endwall at part-span, which enables a variation of the inlet endwall boundary layer conditions. The new design is applied to the T106A low pressure turbine cascade for endwall flow investigations in the High-Speed Cascade Wind Tunnel of the Institute of Jet Propulsion at the Bundeswehr University Munich. Measurements are conducted at realistic flow conditions (M2th = 0.59, Re2th = 2·105) in three cases of different endwall boundary layer conditions with and without periodically incoming wakes. The endwall boundary layer is characterized by 1D-CTA measurements upstream of the blade passage. Secondary flow is evaluated by Five-hole-probe measurements in the turbine exit flow. A strong similarity is found between the time-averaged effects of unsteady inflow conditions and the effects of changing inlet endwall boundary layer conditions regarding the attenuation of secondary flow. Furthermore, the experimental investigations show, that all design goals for the improved T106A cascade are met.



Author(s):  
Wenjiang Wu ◽  
Chan Y. Ching

The effect of a partition on the laminar natural convection flow in an air-filled square cavity driven by a temperature difference across the vertical walls was investigated experimentally. Two partitions with non-dimensional heights of 0.0625 and 0.125 was attached either to the upper half of the heated vertical wall or the top wall at different locations. The experiments were performed for a global Grashof number of approximately 1.24×108 and non-dimensional top wall temperatures of approximately 0.48 to 2.28. At the higher top wall temperatures, a secondary flow circulation region formed between the partition attached to the top wall and the heated vertical wall of the cavity. This secondary flow circulation region was sensitive to the location and height of the partition, in addition to the top wall temperature of the cavity. The secondary flow circulation region moved the location where the upward boundary layer flow along the heated vertical wall turned over to be further away from the top wall, than in the cavity without the partition. A thermal boundary layer was observed to move along the rear surface of the partition attached to the top wall. In the region close to the top wall, the partitions caused the non-dimensional temperature outside of the boundary layer and the local Nusselt number along the heated vertical wall to be different from that in the cavity without the partition. There were no significant effects of the partition on the flow and heat transfer characteristics in the lower half of the cavity.





Sign in / Sign up

Export Citation Format

Share Document