Solitary waves and double layers in an inhomogeneous electronegative plasma with heavier negative ions

2020 ◽  
Vol 27 (2) ◽  
pp. 022105
Author(s):  
Shaukat Ali Shan ◽  
Q. Haque
2010 ◽  
Vol 76 (3-4) ◽  
pp. 409-418 ◽  
Author(s):  
A. A. MAMUN ◽  
K. S. ASHRAFI ◽  
M. G. M. ANOWAR

AbstractThe dust ion-acoustic solitary waves (SWs) in an unmagnetized dusty adiabatic electronegative plasma containing inertialess adiabatic electrons, inertial single charged adiabatic positive and negative ions, and stationary arbitrarily (positively and negatively) charged dust have been theoretically studied. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits an SW solution. The combined effects of the adiabaticity of plasma particles, inertia of positive or negative ions, and presence of positively or negatively charged dust, which are found to significantly modify the basic features of small but finite-amplitude dust-ion-acoustic SWs, are explicitly examined. The implications of our results in space and laboratory dusty electronegative plasmas are briefly discussed.


2012 ◽  
Vol 85 (6) ◽  
pp. 065501 ◽  
Author(s):  
A Mannan ◽  
A A Mamun ◽  
P K Shukla

2012 ◽  
Vol 78 (3) ◽  
pp. 279-288 ◽  
Author(s):  
S. S. DUHA ◽  
M. S. RAHMAN ◽  
A. A. MAMUN ◽  
M. G. M. ANOWAR

AbstractBasic features of obliquely propagating dust ion-acoustic (DIA) solitary waves, and their multidimensional instability in a magnetized dusty electronegative plasma (DENP) containing Boltzmann electrons, Boltzmann negative ions, adiabatic mobile positive ions, and negatively charged stationary dust have been theoretically investigated by reductive perturbation method and small-k perturbation expansion technique. The combined effects of ion adiabaticity, external magnetic field (obliqueness), and negatively charged dust, which are found to significantly modify the basic properties (speed, amplitude, width, and instability) of small but finite-amplitude DIA solitary waves, are explicitly examined. It is also found that the instability criterion and the growth rate of unstable perturbation are significantly modified by the external magnetic field, the propagation directions of both the nonlinear waves, and their perturbation modes. The implications of our results in space and laboratory dusty plasmas are briefly discussed.


2009 ◽  
Vol 80 (4) ◽  
Author(s):  
A. A. Mamun ◽  
P. K. Shukla ◽  
B. Eliasson

2010 ◽  
Vol 77 (1) ◽  
pp. 133-143 ◽  
Author(s):  
M. G. M. ANOWAR ◽  
K. S. ASHRAFI ◽  
A. A. MAMUN

AbstractThe basic features of obliquely propagating dust ion-acoustic (DIA) solitary waves in an adiabatic magnetized dusty electronegative plasma (containing Boltzmann electrons, Boltzmann negative ions, adiabatic positive ions, and negatively charged stationary dust) have been investigated. The reductive perturbation method has been employed to derive the Korteweg–de Vries (KdV) equation which admits a solitary wave solution. The combined effects of ion adiabaticity and external magnetic field (obliqueness), which are found to significantly modify the basic features of the small but finite-amplitude DIA solitary waves, are explicitly examined. The implications of our results in space and laboratory dusty plasmas are briefly discussed.


2020 ◽  
Vol 75 (12) ◽  
pp. 999-1007
Author(s):  
Rustam Ali ◽  
Anjali Sharma ◽  
Prasanta Chatterjee

AbstractHead-on interaction of four dust ion acoustic (DIA) solitons and the statistical properties of the wave field due to head-on interaction of solitons moving in opposite direction is studied in the framework of two Korteweg de Vries (KdV) equations. The extended Poincaré–Lighthill–Kuo (PLK) method is applied to obtain two opposite moving KdV equations from an unmagnetized four component plasma model consisting of Maxwellian negative ions, cold mobile positive ions, κ-distributed electrons and positively charged dust grains. Hirota’s bilinear method is adopted to obtain two-soliton solutions of both the KdV equations and accordingly act of soliton turbulence is presented due to head-on collision of four solitons. The amplitude and shape of the resultant wave profile at the point of strongest interaction are obtained. To see the effect of head-on collision on the statistical properties of wave field the first four moments are computed. It is observed that the head-on collision has no effect on the first integral moment while the second, third and fourth moments increase in the dominant interaction region of four solitons, which is a clean indication of soliton turbulence.


Sign in / Sign up

Export Citation Format

Share Document