scholarly journals Laser-induced breakdown spectroscopy (LIBS) for printing ink analysis coupled with principle component analysis (PCA)

Author(s):  
Yew Wan Hui ◽  
Naji Arafat Mahat ◽  
Dzulkiflee Ismail ◽  
Raja Kamarulzaman Raja Ibrahim
2020 ◽  
Vol 12 (10) ◽  
pp. 1316-1323 ◽  
Author(s):  
Yawen Yang ◽  
Chen Li ◽  
Shu Liu ◽  
Hong Min ◽  
Chenglin Yan ◽  
...  

In this work, PCA-ANN models of LIBS spectra were developed to classify and identify iron ores according to the production countries and brands.


2019 ◽  
Vol 74 (1) ◽  
pp. 42-54 ◽  
Author(s):  
Daniel Diaz ◽  
Alejandro Molina ◽  
David W. Hahn

Laser-induced breakdown spectroscopy (LIBS) and principal component analysis (PCA) were applied to the classification of LIBS spectra from gold ores prepared as pressed pellets from pulverized bulk samples. For each sample, 5000 single-shot LIBS spectra were obtained. Although the gold concentrations in the samples were as high as 7.7 µg/g, Au emission lines were not observed in most single-shot LIBS spectra, rendering the application of the usual ensemble-averaging approach for spectral processing to be infeasible. Instead, a PCA approach was utilized to analyze the collection of single-shot LIBS spectra. Two spectral ranges of 21 nm and 0.15 nm wide were considered, and LIBS variables (i.e., wavelengths) reduced to no more than three principal components. Single-shot spectra containing Au emission lines (positive spectra) were discriminated by PCA from those without the spectral feature (negative spectra) in a spectral range of less than 1 nm wide around the Au(I) 267.59 nm emission line. Assuming a discrete gold distribution at very low concentration, LIBS sampling of gold particles seemed unlikely; therefore, positive spectra were considered as data outliers. Detection of data outliers was possible using two PCA statistical parameters, i.e., sample residual and Mahalanobis distance. Results from such a classification were compared with a standard database created with positive spectra identified with a filtering algorithm that rejected spectra with an Au intensity below the smallest detectable analytical LIBS signal (i.e., below the LIBS limit of detection). The PCA approach successfully identified 100% of the data outliers when compared with the standard database. False identifications in the multivariate approach were attributed to variations in shot-to-shot intensity and the presence of interfering emission lines.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3744
Author(s):  
Flavio Cicconi ◽  
Violeta Lazic ◽  
Antonio Palucci ◽  
Ana Cristina Almeida Assis ◽  
Francesco Saverio Romolo

Laser-induced breakdown spectroscopy (LIBS) was tested for all of the relevant issues in forensic examinations of commercial inks, including classification of pen inks on one paper type and on different paper types, determination of the deposition order of layered inks, and analysis of signatures and toners on one questioned document. The scope of this work was to determine the potential of a single LIBS setup that is compatible with portable instruments for different types of ink analysis, rather than building a very large database for inks and papers. We identified up to seven metals characteristic for the examined inks, which allowed to fully discriminate all eight black inks on one type of printing paper. When the inks were tested on ten different papers, the correct classification rates for some of them were reduced for reasons thoroughly studied and explained. The replicated tests on three crossing points, each one involving a pair of blue or black inks, were successful in five cases out of six. In the test simulating documents of forensic interest (questioned documents), LIBS was able to correctly identify the differences in three inks used for signatures on one of the three pages and the use of different printing inks on each page of the document.


Sign in / Sign up

Export Citation Format

Share Document