Prediction of angular distortion in gas tungsten arc welded 202 grade stainless steel plates using artificial neural networks – An experimental approach

2019 ◽  
Author(s):  
R. Sudhakaran ◽  
P. S. Sivasakthivel ◽  
M. Subramanian ◽  
S. Mahendran
2011 ◽  
Vol 189-193 ◽  
pp. 3579-3582
Author(s):  
Jian Hao ◽  
Zhen Luo ◽  
Xian Zheng Bu ◽  
Jian Wu Zhang

In order to investigate the effect of active fluxes on weld penetration, angular distortion and weld morphology in gas tungsten arc welding (GTAW), three types of oxide fluxes-CaO, TiO2and Al2O3-were used in the welding of 5mm think stainless steel plates. Those powders were applied through a thin layer of the flux to produce a bead on plate welds. The results showed that compared with conventional TIG welding, increased weld penetration and reduced angular distortion of the weld piece were obtained with the application of active fluxes. However, the weld morphology was not changed significantly when the powders were coated on the surface of steel. It was also found that each of the powders has a fittest range in penetration increment. Whether the rate of the coating run out of the range, the effects of these active fluxes on the increased weld penetration were not obvious. The CaO flux has a narrow effective range for deep penetration, while the Al2O3powder does have no effect on A-TIG penetration. The mechanism of those different performances has not been found out. According to the investment, the mechanism of active fluxes for the increased weld penetration and reduced angular distortion is related to the contraction of the arc.


Author(s):  
Sudipto Chaki ◽  
Dipankar Bose

In the present work, artificial neural networks (ANN) have been used to model the complex relationship between input-output parameters of metal inert gas (MIG) welding processes. Four ANN training algorithms such as back propagation neural network (BPNN) with gradient descent momentum (GDM), BPNN with Levenberg Marquardt (LM) algorithm, BPNN with Bayesian regularization (BR), and radial basis function networks (RBFN) method have been used for prediction modelling. An experimentation based on full factorial experimental design has been conducted on MIG welding of austenitic stainless steel of grade-304 where welding current, welding speed, and voltage have been considered as input parameters, and tensile strength has been considered as measurable output parameter. The dataset so constituted is used for ANN modelling. Altogether, 40 different ANN architectures have been trained and tested using the above-mentioned algorithms, and 3-11-1 ANN architecture trained using BPNN with BR has been considered to show best prediction capability with mean % absolute error of 0.354%.


2016 ◽  
Vol 34 (1-2) ◽  
pp. 113-125 ◽  
Author(s):  
Maria Jesus Jiménez-Come ◽  
Ignacio J. Turias ◽  
Juan Jesus Ruiz-Aguilar

AbstractMotivated to reduce the costs incurred by corrosion in material science, this article presents a combined model based on artificial neural networks (ANNs) to predict pitting corrosion status of 316L austenitic stainless steel. This model offers the advantage of automatically determining the pitting corrosion status of the material. In this work, the pitting corrosion status was predicted, with the environmental conditions considered, in addition to the values of the breakdown potential estimated by the model previously, but without having to use polarization tests. The generalization ability of the model was verified by the evaluation using the experimental data obtained from the European project called “Avoiding Catastrophic Corrosion Failure of Stainless Steel”. Receiver operating characteristic space, in addition to area under the curve (AUC) values, was presented to measure the prediction performance of the model. Based on the results (0.994 for AUC, 0.980 for sensitivity, and 0.956 for specificity), it can be concluded that ANNs become an efficient tool to predict pitting corrosion status of austenitic stainless steel automatically using this two-stage procedure approach.


Sign in / Sign up

Export Citation Format

Share Document