scholarly journals Fingering regimes in unstable miscible displacements

2020 ◽  
Vol 32 (1) ◽  
pp. 016601
Author(s):  
S. A. Abdul Hamid ◽  
A. H. Muggeridge
2021 ◽  
Vol 917 ◽  
Author(s):  
Min Chan Kim ◽  
Satyajit Pramanik ◽  
Vandita Sharma ◽  
Manoranjan Mishra

Abstract


1964 ◽  
Vol 4 (04) ◽  
pp. 356-362 ◽  
Author(s):  
J.M. Dumore

Abstract If, in a vertical, downward miscible displacement, the transition zone between the displacing and displaced fluids is neglected, a criterion for stable displacement can be obtained by considering a small hypothetical protrusion of one of the fluids into the other. This criterion leads to the definition of the well-known critical rate, uc = kg ??/?µ. The consideration is further extended by taking into account the transition zone that develops as a result of diffusion and mixing. A generalization of the previous criterion leads to the definition of another characteristic rate, the stable rate, which in actual miscible drives will be less than the critical rate. In such drives, the entire transition zone is stable at rates less than the stable rate. At rates between the stable and critical rates, the displacement is only partly stable, i.e. part of the transition zone adjacent to the displaced fluid is in an unstable position. From that part of the transition zone viscous fingers will develop. At rates greater than the critical rate the entire displacement is unstable and viscous fingers will develop more strongly. Results of laboratory experiments are in agreement with the expected behavior based on the theoretically deduced stability of the displacement. INTRODUCTION The simplest form of miscible drive in an oil-bearing formation is the injection of a fluid that is completely miscible* with the oil under reservoir conditions. In general, such a fluid, a solvent for example, is less dense and less viscous than the oil present in the formation. If it is injected into a horizontal homogeneous layer, gravitational forces will lead to the formation of a gravity tongue of solvent in the upper part of the layer and the adverse solvent-oil viscosity ratio will cause viscous fingers to develop. If, however, the solvent is injected up-structure into a dipping layer, gravity has a favorable effect, because it tends to keep the less dense solvent up-structure. Tongue formation and viscous fingering are consequently reduced and it is even possible that they will be suppressed completely. Viscous fingering and gravity tonguing are the consequences of the instability of the displacement. A stable displacement cannot result in growing viscous fingers and/or growing gravity tongues. Since large amounts of oil can be bypassed if there is viscous fingering and/or gravity tonguing, the stability of a miscible drive is very important with respect to the recovery efficiency of the drive. The stability is of particular importance in miscible-slug drives, as it determines how quickly the miscible slug between the displaced and displacing fluids will be distorted and broken up, after which the drive is no longer completely miscible. Stability is thus a most important factor in determining the success of a miscible drive, and it is considered that the aspects of stability considered in this paper will make a useful contribution to existing theories. Consideration is given only to vertical downward displacements, in which no gravity tongues can develop and which are therefore simpler than downward displacements in sloping layers.


2018 ◽  
Author(s):  
Qingwang Yuan ◽  
Shuoshi Wang ◽  
Jinjie Wang ◽  
Fanhua Zeng ◽  
Kelvin D. Knorr ◽  
...  

2013 ◽  
Vol 721 ◽  
pp. 268-294 ◽  
Author(s):  
L. Talon ◽  
N. Goyal ◽  
E. Meiburg

AbstractA computational investigation of variable density and viscosity, miscible displacements in horizontal Hele-Shaw cells is presented. As a first step, two-dimensional base states are obtained by means of simulations of the Stokes equations, which are nonlinear due to the dependence of the viscosity on the local concentration. Here, the vertical position of the displacement front is seen to reach a quasisteady equilibrium value, reflecting a balance between viscous and gravitational forces. These base states allow for two instability modes: first, there is the familiar tip instability driven by the unfavourable viscosity contrast of the displacement, which is modulated by the presence of density variations in the gravitational field; second, a gravitational instability occurs at the unstably stratified horizontal interface along the side of the finger. Both of these instability modes are investigated by means of a linear stability analysis. The gravitational mode along the side of the finger is characterized by a wavelength of about one half to one full gap width. It becomes more unstable as the gravity parameter increases, even though the interface is shifted closer to the wall. The growth rate is largest far behind the finger tip, where the interface is both thicker, and located closer to the wall, than near the finger tip. The competing influences of interface thickness and wall proximity are clarified by means of a parametric stability analysis. The tip instability mode represents a gravity-modulated version of the neutrally buoyant mode. The analysis shows that in the presence of density stratification its growth rate increases, while the dominant wavelength decreases. This overall destabilizing effect of gravity is due to the additional terms appearing in the stability equations, which outweigh the stabilizing effects of gravity onto the base state.


Sign in / Sign up

Export Citation Format

Share Document