scholarly journals Quantum particle model of free particle solution in one-dimensional Klein-Gordon equation

2019 ◽  
Author(s):  
Teguh Budi Prayitno
2020 ◽  
Vol 33 (1) ◽  
pp. 10-12
Author(s):  
V. N. Salomatov

A system of two equations is found that has solutions which coincide with the solutions of the Klein‐Gordon equation in the rest frame. This system includes the Schrödinger equation for a free neutral spinless particle. Using the Schrödinger equation as an additional condition for solving the Klein‐Gordon equation in the rest frame leads to two Helmholtz equations. Helmholtz equations can be solved by specifying a particle model and boundary conditions. One of the Helmholtz equations leads to discreteness of the rest masses of relativistic particles.


2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


Mathematics ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 200 ◽  
Author(s):  
He Yang

The Klein-Gordon equation is a model for free particle wave function in relativistic quantum mechanics. Many numerical methods have been proposed to solve the Klein-Gordon equation. However, efficient high-order numerical methods that preserve energy and linear momentum of the equation have not been considered. In this paper, we propose high-order numerical methods to solve the Klein-Gordon equation, present the energy and linear momentum conservation properties of our numerical schemes, and show the optimal error estimates and superconvergence property. We also verify the performance of our numerical schemes by some numerical examples.


2020 ◽  
Vol 98 (10) ◽  
pp. 939-943
Author(s):  
Eduardo López ◽  
Clara Rojas

We present a study of the one-dimensional Klein–Gordon equation by a smooth barrier. The scattering solutions are given in terms of the Whittaker Mκ,μ(x) function. The reflection and transmission coefficients are calculated in terms of the energy, the height, and the smoothness of the potential barrier. For any value of the smoothness parameter we observed transmission resonances.


2006 ◽  
Vol 21 (02) ◽  
pp. 313-325 ◽  
Author(s):  
VÍCTOR M. VILLALBA ◽  
CLARA ROJAS

We solve the Klein–Gordon equation in the presence of a spatially one-dimensional cusp potential. The bound state solutions are derived and the antiparticle bound state is discussed.


2011 ◽  
Vol 20 (01) ◽  
pp. 55-61 ◽  
Author(s):  
SHISHAN DONG ◽  
SHI-HAI DONG ◽  
H. BAHLOULI ◽  
V. B. BEZERRA

Using the shape invariance approach we obtain exact solutions of one-dimensional Klein–Gordon equation with equal types of scalar and vector hyperbolic Scarf potentials. This is considered in the framework of supersymmetric quantum mechanics method.


Sign in / Sign up

Export Citation Format

Share Document