scholarly journals Passive control of the onset of vortex shedding in flow past a circular cylinder using slit

2020 ◽  
Vol 32 (1) ◽  
pp. 013602 ◽  
Author(s):  
Alok Mishra ◽  
Mohd. Hanzla ◽  
Ashoke De
2011 ◽  
Vol 680 ◽  
pp. 459-476 ◽  
Author(s):  
PRANESH MURALIDHAR ◽  
NANGELIE FERRER ◽  
ROBERT DANIELLO ◽  
JONATHAN P. ROTHSTEIN

Superhydrophobic surfaces have been shown to produce significant drag reduction for both laminar and turbulent flows of water through large- and small-scale channels. In this paper, a series of experiments were performed which investigated the effect of superhydrophobic-induced slip on the flow past a circular cylinder. In these experiments, circular cylinders were coated with a series of superhydrophobic surfaces fabricated from polydimethylsiloxane with well-defined micron-sized patterns of surface roughness. The presence of the superhydrophobic surface was found to have a significant effect on the vortex shedding dynamics in the wake of the circular cylinder. When compared to a smooth, no-slip cylinder, cylinders coated with superhydrophobic surfaces were found to delay the onset of vortex shedding and increase the length of the recirculation region in the wake of the cylinder. For superhydrophobic surfaces with ridges aligned in the flow direction, the separation point was found to move further upstream towards the front stagnation point of the cylinder and the vortex shedding frequency was found to increase. For superhydrophobic surfaces with ridges running normal to the flow direction, the separation point and shedding frequency trends were reversed. Thus, in this paper we demonstrate that vortex shedding dynamics is very sensitive to changes of feature spacing, size and orientation along superhydrophobic surfaces.


2014 ◽  
Vol 493 ◽  
pp. 9-14
Author(s):  
Dedy Zulhidayat Noor ◽  
Eddy Widiyono ◽  
Suhariyanto ◽  
Lisa Rusdiyana ◽  
Joko Sarsetiyanto

Laminar flow past a circular cylinder has been studied numerically at low Reynolds number. The upstream and downstream rods have been used as passive control in order to reduce hydrodynamics forces acting on the cylinder. Both the upstream and downstream rods significantly contribute in reduction of drag and fluctuating lift compared to single cylinder without the rods. More detail, the upstream installation rod is more dominant in drag reduction than the downstream one. On the contrary, the downstream rod has suppressed the magnitude of the fluctuating lift almost twice that of the upstream configuration. Placing the two rods together as the upstream and downstream passive control in tandem arrangement has given more hydrodynamics forces reduction than the single rod configurations.Keywords:circular cylinder, passive control, tandem, drag, lift.


2007 ◽  
Vol 592 ◽  
pp. 89-115 ◽  
Author(s):  
A. MILIOU ◽  
A. DE VECCHI ◽  
S. J. SHERWIN ◽  
J. M. R. GRAHAM

Three-dimensional spectral/hp computations have been performed to study the fundamental mechanisms of vortex shedding in the wake of curved circular cylinders at Reynolds numbers of 100 and 500. The basic shape of the body is a circular cylinder whose centreline sweeps through a quarter section of a ring and the inflow direction lies on the plane of curvature of the quarter ring: the free stream is then parallel to the geometry considered and the part of the ring that is exposed to it will be referred to as the ‘leading edge’. Different configurations were investigated with respect to the leading-edge orientation. In the case of a convex-shaped geometry, the stagnation face is the outer surface of the ring: this case exhibited fully three-dimensional wake dynamics, with the vortex shedding in the upper part of the body driving the lower end at one dominant shedding frequency for the whole cylinder span. The vortex-shedding mechanism was therefore not governed by the variation of local normal Reynolds numbers dictated by the curved shape of the leading edge. A second set of simulations were conducted with the free stream directed towards the inside of the ring, in the so-called concave-shaped geometry. No vortex shedding was detected in this configuration: it is suggested that the strong axial flow due to the body's curvature and the subsequent production of streamwise vorticity plays a key role in suppressing the wake dynamics expected in the case of flow past a straight cylinder. The stabilizing mechanism stemming from the concave curved geometry was still found to govern the wake behaviour even when a vertical extension was added to the top of the concave ring, thereby displacing the numerical symmetry boundary condition at this point away from the top of the deformed cylinder. In this case, however, the axial flow from the deformed cylinder was drawn into the wake of vertical extension, weakening the shedding process expected from a straight cylinder at these Reynolds numbers. These considerations highlight the importance of investigating flow past curved cylinders using a full three-dimensional approach, which can properly take into account the role of axial velocity components without the limiting assumptions of a sectional analysis, as is commonly used in industrial practice. Finally, towing-tank flow visualizations were also conducted and found to be in qualitative agreement with the computational findings.


Author(s):  
Benjamin Bouscasse ◽  
Andrea Colagrossi ◽  
Salvatore Marrone ◽  
Antonio Souto-Iglesias

Flow past a circular cylinder close to a free surface at low Reynolds and large Froude numbers is investigated numerically using the Smoothed Particle Hydrodynamics model. This meshless method allows for a non-diffusive computation of the free surface evolution, even while breaking and fragmentation may occur. The distance of the cylinder to the free surface, submergence, is varied in order to investigate the detached flow patterns dependence with this factor. Vorticity shed by the cylinder, vortex generation due to free surface breaking, mixing processes, and drag and lift coefficients behavior are discussed. It has been found that, for small submergences, the classical Von Karman vortex shedding from the cylinder does not take place. In turn, moderate vortex shedding occurs, departing not from the cylinder but from vorticity generated at the free surface. This shedding takes places simultaneously with the transport of free surface fluid elements into the bulk of the fluid. It has been also found that for even smaller depth ratios, a vorticity layer remains spatially localized between the cylinder and the free surface, and a stagnation recirculating area develops behind the cylinder. Results are compared with literature finding reasonable qualitatively agreement with experimental works conducted with similar geometrical configuration but larger Reynolds number.


Author(s):  
Michael M. Bernitsas ◽  
Kamaldev Raghavan ◽  
G. Duchene

Results of an experimental investigation on fluid flow past an elastically mounted circular cylinder with rectangular surface roughness strips are presented. Flow characteristics change depending on the strip width, roughness grit size, and location. Roughness size and distribution can be designed to enhance or reduce/suppress VIV amplitude and increase or reduce the range of synchronization, respectively. To the authors’ knowledge this is the first study in passive control of VIV using properly distributed roughness.


Author(s):  
Tahir Durhasan ◽  
Engin Pınar ◽  
Muhammed M. Aksoy ◽  
Göktürk M. Özkan ◽  
Hüseyin Akıllı ◽  
...  

In the present study, it was aimed to suppress the vortex shedding occurred in the near wake of a circular cylinder (inner cylinder) by perforated cylinder (outer cylinder) in shallow water flow. The inner cylinder (Di) and outer cylinder (Do) have fixed diameters, such as Di = 50 mm and Do = 100 mm, respectively. The effect of porosity, β, was examined using four different porosity ratios, 0.3, 0.5, 0.6 and 0.8. In order to investigate the effect of arc angle of outer cylinder, α, four different arc angles, α = 360°, 180°, 150° and 120° were used. The experiments were implemented in a recirculating water channel using the particle image velocimetry, PIV technique. The depth-averaged free-stream velocity was kept constant as U∞ = 100 mm/s which corresponded to a Reynolds number of Re = 5000 based on the inner cylinder diameter. The results demonstrated that the suppression of vortex shedding is substantially achieved by perforated outer cylinder for arc angle of α = 360° at β = 0.6. Turbulence Kinetic Energy statistics show that porosity, β, is highly effective on the flow structure. In comparison with the values obtained from the case of the bare cylinder, at porosity β = 0.6, turbulence characteristics are reduced by %80. Also, the point, which the values of maximum TKE, shift to a farther downstream compared to the case of bare cylinder.


2010 ◽  
Vol 665 ◽  
pp. 238-273 ◽  
Author(s):  
CHANG-YUE XU ◽  
LI-WEI CHEN ◽  
XI-YUN LU

Numerical investigation of the compressible flow past a wavy cylinder was carried out using large-eddy simulation for a free-stream Mach number M∞ = 0.75 and a Reynolds number based on the mean diameter Re = 2 × 105. The flow past a corresponding circular cylinder was also calculated for comparison and validation against experimental data. Various fundamental mechanisms dictating the intricate flow phenomena, including drag reduction and fluctuating force suppression, shock and shocklet elimination, and three-dimensional separation and separated shear-layer instability, have been studied systematically. Because of the passive control of the flow over a wavy cylinder, the mean drag coefficient of the wavy cylinder is less than that of the circular cylinder with a drag reduction up to 26%, and the fluctuating force coefficients are significantly suppressed to be nearly zero. The vortical structures near the base region of the wavy cylinder are much less vigorous than those of the circular cylinder. The three-dimensional shear-layer shed from the wavy cylinder is more stable than that from the circular cylinder. The vortex roll up of the shear layer from the wavy cylinder is delayed to a further downstream location, leading to a higher-base-pressure distribution. The spanwise pressure gradient and the baroclinic effect play an important role in generating an oblique vortical perturbation at the separated shear layer, which may moderate the increase of the fluctuations at the shear layer and reduce the growth rate of the shear layer. The analysis of the convective Mach number indicates that the instability processes in the shear-layer evolution are derived from oblique modes and bi-dimensional instability modes and their competition. The two-layer structures of the shear layer are captured using the instantaneous Lamb vector divergence, and the underlying dynamical processes associated with the drag reduction are clarified. Moreover, some phenomena relevant to the compressible effect, such as shock waves, shocklets and shock/turbulence interaction, are analysed. It is found that the shocks and shocklets which exist in the circular cylinder flow are eliminated for the wavy cylinder flow and the wavy surface provides an effective way of shock control. As the shock/turbulence interaction is avoided, a significant drop of the turbulent fluctuations around the wavy cylinder occurs. The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to the passive control of the compressible flow past a wavy surface.


Sign in / Sign up

Export Citation Format

Share Document