scholarly journals Characterizing three-dimensional features of vortex surfaces in the flow past a finite plate

2020 ◽  
Vol 32 (1) ◽  
pp. 011903 ◽  
2005 ◽  
Vol 127 (1) ◽  
pp. 163-171 ◽  
Author(s):  
H. Niazmand ◽  
M. Renksizbulut

Computations are performed to determine the transient three-dimensional heat transfer rates and fluid forces acting on a stream-wise spinning sphere for Reynolds numbers in the range 10⩽Re⩽300 and angular velocities Ωx⩽2. In this Re range, classical flow past a solid sphere develops four different flow regimes, and the effects of particle spin are studied in each regime. Furthermore, the combined effects of particle spin and surface blowing are examined. Sphere spin increases drag in all flow regimes, while lift shows a nonmonotonic behavior. Heat transfer rates are not influenced by spin up to a certain Ωx but increase monotonically thereafter. An interesting feature associated with sphere spin is the development of a special wake regime such that the wake simply spins without temporal variations in its shape. For this flow condition, the magnitudes of the lift, drag, and heat transfer coefficients remain constant in time. Correlations are provided for drag and heat transfer.


1991 ◽  
Vol 35 (04) ◽  
pp. 314-324
Author(s):  
Todd McComb

Using low-aspect-ratio flat ship theory, this paper defines a procedure to determine the position of a hull which is in equilibrium at some "fast" speed in terms of a given hull shape for the same hull at rest. This procedure is then used to find the equilibrium flow past a moving ship, when given the shape of the hull at rest. The method is then extended to find the hull configuration at various speeds based on either the configuration in the static case or at some other equilibrium speed, leading to a calculation of drag versus speed. Some general formulas and some simple examples are given.


2022 ◽  
Vol 244 ◽  
pp. 110379
Author(s):  
Weilin Chen ◽  
Chunning Ji ◽  
Md. Mahbub Alam ◽  
Yuhao Yan

2018 ◽  
Vol 860 ◽  
pp. 739-766 ◽  
Author(s):  
Rémi Bourguet

The flow-induced vibrations of an elastically mounted circular cylinder, free to oscillate in an arbitrary direction and forced to rotate about its axis, are examined via two- and three-dimensional simulations, at a Reynolds number equal to 100, based on the body diameter and inflow velocity. The behaviour of the flow–structure system is investigated over the entire range of vibration directions, defined by the angle $\unicode[STIX]{x1D703}$ between the direction of the current and the direction of motion, a wide range of values of the reduced velocity $U^{\star }$ (inverse of the oscillator natural frequency) and three values of the rotation rate (ratio between the cylinder surface and inflow velocities), $\unicode[STIX]{x1D6FC}\in \{0,1,3\}$, in order to cover the reference non-rotating cylinder case, as well as typical slow and fast rotation cases. The oscillations of the non-rotating cylinder ($\unicode[STIX]{x1D6FC}=0$) develop under wake-body synchronization or lock-in, and their amplitude exhibits a bell-shaped evolution, typical of vortex-induced vibrations (VIV), as a function of $U^{\star }$. When $\unicode[STIX]{x1D703}$ is increased from $0^{\circ }$ to $90^{\circ }$ (or decreased from $180^{\circ }$ to $90^{\circ }$), the bell-shaped curve tends to monotonically increase in width and magnitude. For all angles, the flow past the non-rotating body is two-dimensional with formation of two counter-rotating spanwise vortices per cycle. The behaviour of the system remains globally the same for $\unicode[STIX]{x1D6FC}=1$. The principal effects of the slow rotation are a slight amplification of the VIV-like responses and widening of the vibration windows, as well as a limited asymmetry of the responses and forces about the symmetrical configuration $\unicode[STIX]{x1D703}=90^{\circ }$. The impact of the fast rotation ($\unicode[STIX]{x1D6FC}=3$) is more pronounced: VIV-like responses persist over a range of $\unicode[STIX]{x1D703}$ but, outside this range, the system is found to undergo a transition towards galloping-like oscillations characterised by amplitudes growing unboundedly with $U^{\star }$. A quasi-steady modelling of fluid forcing predicts the emergence of galloping-like responses as $\unicode[STIX]{x1D703}$ is varied, which suggests that they could be mainly driven by the mean flow. It, however, appears that flow unsteadiness and body motion remain synchronised in this vibration regime where a variety of multi-vortex wake patterns are uncovered. The interaction with flow dynamics results in deviations from the quasi-steady prediction. The successive steps in the evolution of the vibration amplitude versus $U^{\star }$, linked to wake pattern switch, are not captured by the quasi-steady approach. The flow past the rapidly-rotating, vibrating cylinder becomes three-dimensional over an interval of $\unicode[STIX]{x1D703}$ including the in-line oscillation configuration, with only a minor effect on the system behaviour.


2014 ◽  
Vol 111 ◽  
pp. 364-380 ◽  
Author(s):  
V.M. Ribeiro ◽  
P.M. Coelho ◽  
F.T. Pinho ◽  
M.A. Alves

2013 ◽  
Vol 735 ◽  
pp. 307-346 ◽  
Author(s):  
S. Kumar ◽  
C. Lopez ◽  
O. Probst ◽  
G. Francisco ◽  
D. Askari ◽  
...  

AbstractFlow past a circular cylinder executing sinusoidal rotary oscillations about its own axis is studied experimentally. The experiments are carried out at a Reynolds number of 185, oscillation amplitudes varying from $\mathrm{\pi} / 8$ to $\mathrm{\pi} $, and at non-dimensional forcing frequencies (ratio of the cylinder oscillation frequency to the vortex-shedding frequency from a stationary cylinder) varying from 0 to 5. The diagnostic is performed by extensive flow visualization using the hydrogen bubble technique, hot-wire anemometry and particle-image velocimetry. The wake structures are related to the velocity spectra at various forcing parameters and downstream distances. It is found that the phenomenon of lock-on occurs in a forcing frequency range which depends not only on the amplitude of oscillation but also the downstream location from the cylinder. The experimentally measured lock-on diagram in the forcing amplitude and frequency plane at various downstream locations ranging from 2 to 23 diameters is presented. The far-field wake decouples, after the lock-on at higher forcing frequencies and behaves more like a regular Bénard–von Kármán vortex street from a stationary cylinder with vortex-shedding frequency mostly lower than that from a stationary cylinder. The dependence of circulation values of the shed vortices on the forcing frequency reveals a decay character independent of forcing amplitude beyond forcing frequency of ${\sim }1. 0$ and a scaling behaviour with forcing amplitude at forcing frequencies ${\leq }1. 0$. The flow visualizations reveal that the far-field wake becomes two-dimensional (planar) near the forcing frequencies where the circulation of the shed vortices becomes maximum and strong three-dimensional flow is generated as mode shape changes in certain forcing parameter conditions. It is also found from flow visualizations that even at higher Reynolds number of 400, forcing the cylinder at forcing amplitudes of $\mathrm{\pi} / 4$ and $\mathrm{\pi} / 2$ can make the flow field two-dimensional at forcing frequencies greater than ${\sim }2. 5$.


Sign in / Sign up

Export Citation Format

Share Document