Mapping of operating modes, power flows and analysis of tractive force characteristics of series – Parallel plug-in hybrid vehicle in certain driving cycle (Case study: Toyota Prius Plug-in Hybrid)

2019 ◽  
Author(s):  
Darius Darell Giovanni ◽  
I. Nyoman Sutantra
Author(s):  
Jakub Lasocki

The World-wide harmonised Light-duty Test Cycle (WLTC) was developed internationally for the determination of pollutant emission and fuel consumption from combustion engines of light-duty vehicles. It replaced the New European Driving Cycle (NEDC) used in the European Union (EU) for type-approval testing purposes. This paper presents an extensive comparison of the WLTC and NEDC. The main specifications of both driving cycles are provided, and their advantages and limitations are analysed. The WLTC, compared to the NEDC, is more dynamic, covers a broader spectrum of engine working states and is more realistic in simulating typical real-world driving conditions. The expected impact of the WLTC on vehicle engine performance characteristics is discussed. It is further illustrated by a case study on two light-duty vehicles tested in the WLTC and NEDC. Findings from the investigation demonstrated that the driving cycle has a strong impact on the performance characteristics of the vehicle combustion engine. For the vehicles tested, the average engine speed, engine torque and fuel flow rate measured over the WLTC are higher than those measured over the NEDC. The opposite trend is observed in terms of fuel economy (expressed in l/100 km); the first vehicle achieved a 9% reduction, while the second – a 3% increase when switching from NEDC to WLTC. Several factors potentially contributing to this discrepancy have been pointed out. The implementation of the WLTC in the EU will force vehicle manufacturers to optimise engine control strategy according to the operating range of the new driving cycle.


Author(s):  
Hadi Abbas ◽  
Youngki Kim ◽  
Jason B. Siegel ◽  
Denise M. Rizzo

This paper presents a study of energy-efficient operation of vehicles with electrified powertrains leveraging route information, such as road grades, to adjust the speed trajectory. First, Pontryagin’s Maximum Principle (PMP) is applied to derive necessary conditions and to determine the possible operating modes. The analysis shows that only 5 modes are required to achieve minimum energy consumption; full propulsion, cruising, coasting, full regeneration, and full regeneration with conventional braking. The minimum energy consumption problem is reformulated and solved in the distance domain using Dynamic Programming to optimize speed profiles. A case study is shown for a light weight military robot including road grades. For this system, a tradeoff between energy consumption and trip time was found. The optimal cycle uses 20% less energy for the same trip duration, or could reduce the travel time by 14% with the same energy consumption compared to the baseline operation.


Author(s):  
Geetha A. ◽  
Subramani C.

<p><span>The modeling of a car is essentially done by taking into consideration the driving terrain, traffic conditions, driver’s behavior and various other factors which may directly or indirectly affect the vehicle’s performance. A vehicle is modeled for given specifications and constraints like maximum speed, maximum acceleration, and braking time, appropriate suspension for the gradient of the road and fuel consumption. Henceforth, a profound study and analysis of different drive cycles are essential. A time dependent drive cycle is a condensed form of data that helps us to determine the time taken to conduct the driving test on the road. This article highlights the development of a real driving cycle in the area of Tamilnadu, India. On-road vehicle’s speeds versus time data were obtained along the selected route. The data obtained were analyzed first and then a new driving cycle was developed.</span></p>


2021 ◽  
pp. 130176
Author(s):  
Shahab Mafi ◽  
Amirhasan Kakaee ◽  
Behrooz Mashadi ◽  
Ashkan Moosavian ◽  
Saied Abdolmaleki ◽  
...  
Keyword(s):  

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4532 ◽  
Author(s):  
Wan Rashidi Bin Wan Ramli ◽  
Apostolos Pesyridis ◽  
Dhrumil Gohil ◽  
Fuhaid Alshammari

Electrification of road transport is a major step to solve the air quality problem and general environmental impact caused by the still widespread use of fossil fuels. At the same time, energy efficiency in the transport sector must be improved as a steppingstone towards a more sustainable future. Multiple waste heat recovery technologies are being investigated for low-temperature waste heat recovery. One of the technologies that is being considered for vehicle application is the Organic Rankine Cycle (ORC). In this paper, the potential of ORC is discussed in detail for hybrid vehicle application. The modelling and testing of multiple systems such as the hybrid vehicle, engine, and ORC waste heat recovery are performed using the computational approach in GT-SUITE software environment correlated against available engine data. It was found that the maximum cycle efficiency achieved from the ORC system was 5.4% with 2.02 kW of delivered power recovered from the waste heat available. This led to 1.0% and 1.2% of fuel economy improvement in the New European Driving Cycle (NEDC) and Worldwide Harmonised Light Vehicle Test Procedure (WLTP) driving cycle test, respectively. From the driving cycle analysis, Hybrid Electric Vehicles (HEV) and ORC are operative in a different part of the driving cycle. This is because the entire propulsion power is provided by the HEV system, resulting in less engine operation in some part of the cycle for the ORC system to function. Apart from that, a brief economic analysis of ORC Waste Heat Recovery (WHR) is also performed in this paper and a comparative analysis is carried out for different waste heat recovery technologies for hybrid vehicle application.


Author(s):  
Jeffrey D. Wishart ◽  
Yuliang Zhou ◽  
Zuomin Dong

Hybrid vehicle technology is beginning to make a significant mark in the automotive industry, most notably by the Toyota Prius THS-II and its one-mode technology, but also by two-mode architectures recently introduced. GM-Allison, Renault, and the Timken Company have attempted to capitalize on the advantages over simpler series and parallel architectures that the series-parallel configuration confers on the Prius while also improving the design by allowing the powertrain configuration to physically shift and operate in two different modes depending on the driving load. This work provides an overview of the state-of-the-art in two-mode hybrid vehicle architectures, and demonstrates the performance of this technology in comparison to the market-leading Toyota Prius one-mode hybrid vehicle technology and conventional ICE technology. Simulations in the NREL ADVISOR® software compare the performances of the one- and two-mode architectures against a parallel-full design and the ICE baseline for four different drive cycles and a vehicle with varying weight that simulates a commercial vehicle application. A configuration that is a variation of those designed by GM-Allison was chosen as the representative of the two-mode architectures. The performance metric was fuel economy. The fuel economy was measured over the course of the drive cycles: (1) Urban Dynamometer Driving Schedule for Heavy Duty Vehicles (UDDSHDV); (2) New York City Truck (NYCT); (3) City-Suburban Heavy Vehicle Route (CSHVR); and (4) Highway Fuel Economy Test (HWFET). The vehicle model uses a module developed in-house for a Kenworth T400 truck with a payload that varies from empty to completely full. The results demonstrate that the two-mode architecture provides significantly improved performance to that of the conventional non-hybrid design and comparable performance to that of the parallel-full hybrid design. Furthermore, the one-mode design is shown to be sub-optimal for this vehicle type. Development and optimization of the control strategy, which is the direction of the current research, should allow for additional improvement in fuel economy; optimization of vehicular components could result in improvements in acceleration ability, gradeability, and top speed performance, which lags behind the performance capabilities of the conventional powertrain vehicle in these metrics. The study confirms that two-mode architecture presents unique advantages for constantly changing driving cycles and vehicle payloads and represents the future of hybrid vehicle technology.


Sign in / Sign up

Export Citation Format

Share Document