Electromagnetic energy tensors and the Lorentz equation of motion for fields with electric and magnetic charge distributions

1982 ◽  
Vol 23 (2) ◽  
pp. 293-295
Author(s):  
J. M. Nevin
2017 ◽  
Vol 72 (8) ◽  
pp. 717-731 ◽  
Author(s):  
Jürgen Bosse

AbstractBy solving the non-relativistic Abraham–Lorentz (AL) equation, I demonstrate that the AL equation of motion is not suited for treating the Lorentz atom, because a steady-state solution does not exist. The AL equation serves as a tool, however, for deducing the appropriate parameters Ω and Γ to be used with the equation of forced oscillations in modelling the Lorentz atom. The electric polarisability, which many authors “derived” from the AL equation in recent years, is shown to violate Kramers–Kronig relations rendering obsolete the extracted photon-absorption rate, for example. Fortunately, errors turn out to be small quantitatively, as long as the light frequency ω is neither too close to nor too far from the resonance frequency Ω. The polarisability and absorption cross section are derived for the Lorentz atom by purely classical reasoning and are shown to agree with the quantum mechanical calculations of the same quantities. In particular, oscillator parameters Ω and Γ deduced by treating the atom as a quantum oscillator are found to be equivalent to those derived from the classical AL equation. The instructive comparison provides a deep insight into understanding the great success of Lorentz’s model that was suggested long before the advent of quantum theory.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 848-853
Author(s):  
XiuLin Huang ◽  
Yan Xu ◽  
ChengZhi Liu

AbstractThis study investigates the curved worldline of a charged particle accelerated by an electromagnetic field in flat spacetime. A new metric, which dependes on the charge-to-mass ratio and electromagnetic potential, is proposed to describe the curve characteristic of the world-line. The main result of this paper is that an equivalent equation of the Lorentz equation of motion is put forward based on a 4-dimensional Riemannian manifold defined by the metric. Using the Ricci rotation coefficients, the equivalent equation is self-consistently constructed. Additionally, the Lorentz equation of motion in the non-inertial reference frames is studied with the local Lorentz covariance of the equivalent equation. The model attempts to geometrize classical electromagnetism in the absence of the other interactions, and it is conducive to the establishment of the unified theory between electromagnetism and gravitation.


Sign in / Sign up

Export Citation Format

Share Document