Smoothness of the action of the gauge transformation group on connections

1986 ◽  
Vol 27 (10) ◽  
pp. 2469-2474 ◽  
Author(s):  
M. C. Abbati ◽  
R. Cirelli ◽  
A. Manià ◽  
P. Michor
1989 ◽  
Vol 6 (4) ◽  
pp. 537-557 ◽  
Author(s):  
Maria C. Abbati ◽  
Renzo Cirelli ◽  
Alessandro Manià

Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 733
Author(s):  
Yu-Shan Bai ◽  
Peng-Xiang Su ◽  
Wen-Xiu Ma

In this paper, by using the gauge transformation and the Lax pairs, the N-fold Darboux transformation (DT) of the classical three-component nonlinear Schrödinger (NLS) equations is given. In addition, by taking seed solutions and using the DT, exact solutions for the given NLS equations are constructed.


2001 ◽  
Vol 16 (10) ◽  
pp. 1679-1701 ◽  
Author(s):  
B. SATHIAPALAN

We continue the discussion of our previous paper on writing down gauge-invariant interacting equations for a bosonic string using the loop variable approach. In the earlier paper the equations were written down in one higher dimension where the fields are massless. In this paper we describe a procedure for dimensional reduction that gives interacting equations for fields with the same spectrum as in bosonic string theory. We also argue that the on-shell scattering amplitudes implied by these equations for the physical modes are the same as for the bosonic string. We check this explicitly for some of the simpler equations. The gauge transformation of space–time fields induced by gauge transformations of the loop variables are discussed in some detail. The unintegrated (i.e. before the Koba–Nielsen integration), regularized version of the equations, are gauge invariant off-shell (i.e. off the free mass shell).


1992 ◽  
Vol 15 (4) ◽  
pp. 789-794 ◽  
Author(s):  
G. Ramanaiah ◽  
V. Kumaran

The Darcy-Brinkman free convection near a wedge and a cone in a porous medium with high porosity has been considered. The surfaces are subjected to a mixed thermal boundary condition characterized by a parameterm;m=0,1,∞correspond to the cases of prescribed temperature, prescribed heat flux and prescribed heat transfer coefficient respectively. It is shown that the solutions for differentmare dependent and a transformation group has been found, through which one can get solution for anymprovided solution for a particular value ofmis known. The effects of Darcy number on skin friction and rate of heat transfer are analyzed.


2003 ◽  
Vol 40 (4) ◽  
pp. 443-462
Author(s):  
Irena Čomić

Lately a big attention has been payed on the higher order geometry. Some relevant papers are mentioned in the references. R. Miron and Gh. Atanasiu in [16], [17] studied the geometry of OsckM. R. Miron in [19] gave the comprehend theory of higher order geometry and its application. The whole theory of sprays in OsckM M is established. Here, using R. Miron's method, a variation of this theory is given. The transformation group is slightly different from that used in [19] and it will change the geometry. The adapted basis, the Liouville vector fields, the equation of sprays, will have different form. We give the relations between coefficients of S and the Liouville vector fields.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Honwah Tam ◽  
Yufeng Zhang ◽  
Xiangzhi Zhang

Applying some reduced Lie algebras of Lie symmetry operators of a Lie transformation group, we obtain an invariant of a second-order differential equation which can be generated by a Euler-Lagrange formulism. A corresponding discrete equation approximating it is given as well. Finally, we make use of the Lie algebras to generate some new integrable systems including (1+1) and (2+1) dimensions.


1993 ◽  
Vol 08 (31) ◽  
pp. 2937-2942
Author(s):  
A. V. BRATCHIKOV

The BLZ method for the analysis of renormalizability of the O(N)/O(N − 1) model is extended to the σ-model built on an arbitrary homogeneous space G/H and in arbitrary coordinates. For deriving Ward-Takahashi (WT) identities an imbedding of the transformation group G in an affine group is used. The structure of the renormalized action is found. All the infinities can be absorbed in a coupling constants renormalization and in a renormalization of auxiliary constants which are related to the imbedding.


Sign in / Sign up

Export Citation Format

Share Document