Inelastic x-ray scattering at modest energy resolution

1997 ◽  
Author(s):  
K. D. Finkelstein ◽  
J. Z. Tischler ◽  
B. C. Larson
2016 ◽  
Vol 23 (4) ◽  
pp. 880-886 ◽  
Author(s):  
Jungho Kim ◽  
Xianbo Shi ◽  
Diego Casa ◽  
Jun Qian ◽  
XianRong Huang ◽  
...  

Advances in resonant inelastic X-ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the IrL3-edge stands at ∼25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid-angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the IrL3-absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X-ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27-ID at the Advanced Photon Source. X-rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X-ray measurements, ray-tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high-resolution RIXS multi-crystal analyzer system.


2013 ◽  
Vol 188 ◽  
pp. 140-149 ◽  
Author(s):  
Yu.V. Shvyd’ko ◽  
J.P. Hill ◽  
C.A. Burns ◽  
D.S. Coburn ◽  
B. Brajuskovic ◽  
...  

2018 ◽  
Vol 25 (2) ◽  
pp. 373-377 ◽  
Author(s):  
Ayman H. Said ◽  
Thomas Gog ◽  
Michael Wieczorek ◽  
XianRong Huang ◽  
Diego Casa ◽  
...  

A novel diced spherical quartz analyzer for use in resonant inelastic X-ray scattering (RIXS) is introduced, achieving an unprecedented energy resolution of 10.53 meV at the IrL3absorption edge (11.215 keV). In this work the fabrication process and the characterization of the analyzer are presented, and an example of a RIXS spectrum of magnetic excitations in a Sr3Ir2O7sample is shown.


2020 ◽  
Vol 27 (2) ◽  
pp. 446-454
Author(s):  
Alexander S. Ditter ◽  
William M. Holden ◽  
Samantha K. Cary ◽  
Veronika Mocko ◽  
Matthew J. Latimer ◽  
...  

X-ray absorption spectroscopy (XAS) beamlines worldwide are steadily increasing their emphasis on full photon-in/photon-out spectroscopies, such as resonant inelastic X-ray scattering (RIXS), resonant X-ray emission spectroscopy (RXES) and high energy resolution fluorescence detection XAS (HERFD-XAS). In such cases, each beamline must match the choice of emission spectrometer to the scientific mission of its users. Previous work has recently reported a miniature tender X-ray spectrometer using a dispersive Rowland refocusing (DRR) geometry that functions with high energy resolution even with a large X-ray spot size on the sample [Holden et al. (2017). Rev. Sci. Instrum. 88, 073904]. This instrument has been used in the laboratory in multiple studies of non-resonant X-ray emission spectroscopy using a conventional X-ray tube, though only for preliminary measurements at a low-intensity microfocus synchrotron beamline. This paper reports an extensive study of the performance of a miniature DRR spectrometer at an unfocused wiggler beamline, where the incident monochromatic flux allows for resonant studies which are impossible in the laboratory. The results support the broader use of the present design and also suggest that the DRR method with an unfocused beam could have important applications for materials with low radiation damage thresholds and that would not survive analysis on focused beamlines.


2019 ◽  
Vol 26 (5) ◽  
pp. 1725-1732 ◽  
Author(s):  
Matteo Rossi ◽  
Christian Henriquet ◽  
Jeroen Jacobs ◽  
Christian Donnerer ◽  
Stefano Boseggia ◽  
...  

Resonant inelastic X-ray scattering (RIXS) is an extremely valuable tool for the study of elementary, including magnetic, excitations in matter. The latest developments of this technique have mostly been aimed at improving the energy resolution and performing polarization analysis of the scattered radiation, with a great impact on the interpretation and applicability of RIXS. Instead, this article focuses on the sample environment and presents a setup for high-pressure low-temperature RIXS measurements of low-energy excitations. The feasibility of these experiments is proved by probing the magnetic excitations of the bilayer iridate Sr3Ir2O7 at pressures up to 12 GPa.


1995 ◽  
Vol 75 (5) ◽  
pp. 850-853 ◽  
Author(s):  
F. Sette ◽  
G. Ruocco ◽  
M. Krisch ◽  
U. Bergmann ◽  
C. Masciovecchio ◽  
...  

2002 ◽  
Vol 316-317 ◽  
pp. 150-153 ◽  
Author(s):  
M. d'Astuto ◽  
P. Giura ◽  
M. Krisch ◽  
M. Lorenzen ◽  
A. Mermet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document