Generalized surface nuclear spin wave induced by external magnetic field

1998 ◽  
Vol 24 (3) ◽  
pp. 164-168
Author(s):  
S. V. Tarasenko
2007 ◽  
Vol 998 ◽  
Author(s):  
Alexander Khitun ◽  
Mingqiang Bao ◽  
Joo-Young Lee ◽  
Kang Wang ◽  
Dok Won Lee ◽  
...  

ABSTRACTWe investigate spin wave propagation and interference in conducting ferromagnetic nanostructures for potential application in spin wave based logic circuits. The novelty of this approach is that information transmission is accomplished without charge transfer. A bit of information is encoded into the phase of spin wave propagating in a nanometer thick ferromagnetic film. A set of “AND”, “NOR”, and “NOT” logic gates can be realized in one device structure by utilizing the effect of spin wave superposition. We present experimental data on spin wave transport in 100nm CoFe films at room temperature obtained by the propagation spin wave spectroscopy technique. Spin wave transport has been studied in the frequency range from 0.5 GHz to 6.0 GHz under different configurations of the external magnetic field. Both phase and amplitude of the spin wave signal are sensitive to the external magnetic field showing 60Deg/10G and 4dB/20G modulation rates, respectively. Potentially, spin wave based logic circuits may compete with traditional electron-based ones in terms of logic functionality and power consumption. The shortcomings of the spin wave based circuits are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jan-Niklas Toedt ◽  
Wolfgang Hansen

AbstractIn this work we present a method to dynamically control the propagation of spin-wave packets. By altering an external magnetic field the refraction of the spin wave at a temporal inhomogeneity is enabled. Since the inhomogeneity is spatially invariant, the spin-wave impulse remains conserved while the frequency is shifted. We demonstrate the stopping and rebound of a traveling Backward-Volume type spin-wave packet.


Sign in / Sign up

Export Citation Format

Share Document