Rayleigh–Taylor instability in a finite thickness layer of a viscous fluid

1989 ◽  
Vol 1 (5) ◽  
pp. 895-896 ◽  
Author(s):  
Hugh R. Brown
2006 ◽  
Vol 129 (1) ◽  
pp. 116-119 ◽  
Author(s):  
Pardeep Kumar ◽  
Roshan Lal

The Rayleigh-Taylor instability of a Newtonian viscous fluid overlying Walters B′ viscoelastic fluid is considered. For the stable configuration, the system is found to be stable or unstable under certain conditions. However, the system is found to be unstable for the potentially unstable configuration. Further it is found numerically that kinematic viscosity has a destabilizing effect, whereas kinematic viscoelasticity has a stabilizing effect on the system.


1997 ◽  
Vol 9 (6) ◽  
pp. 1635-1649 ◽  
Author(s):  
A. Elgowainy ◽  
N. Ashgriz

2017 ◽  
Vol 34 (7) ◽  
pp. 075201
Author(s):  
Hong-Yu Guo ◽  
Li-Feng Wang ◽  
Wen-Hua Ye ◽  
Jun-Feng Wu ◽  
Wei-Yan Zhang

2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Subramanian Annamalai ◽  
Manoj K. Parmar ◽  
Yue Ling ◽  
S. Balachandar

The nonlinear growth of instabilities of an outward propagating, but decelerating, cylindrical interface separated by fluids of different densities is investigated. Single mode perturbations are introduced around the contact-surface, and their evolution is studied by conducting inviscid 2D and 3D numerical simulations. In the past, a significant amount of work has been carried out to model the development of the perturbations in a planar context where the contact surface is stationary or in a spherical context where a point-source blast wave is initiated at the origin. However, for the finite-source cylindrical blast-wave problem under consideration, there is a need for a framework which includes additional complexities such as compressibility, transition from linear to nonlinear stages of instability, finite thickness of the contact interface (CI), and time-dependent deceleration of the contact surface. Several theoretical potential flow models are presented. The model which is able to capture the above mentioned effects (causing deviation from the classical Rayleigh–Taylor Instability (RTI)) is identified as it compares reasonably well with the DNS results. Only for higher wavenumbers, the early development of secondary instabilities (Kelvin–Helmholtz) complicates the model prediction, especially in the estimation of the high-density fluid moving into low-density ambient.


Sign in / Sign up

Export Citation Format

Share Document