KSSOLV-GPU: An efficient GPU-enabled MATLAB toolbox for solving the Kohn-Sham equations within density functional theory in plane-wave basis set

2021 ◽  
Vol 34 (5) ◽  
pp. 552-564
Author(s):  
Zhen-lin Zhang ◽  
Shi-zhe Jiao ◽  
Jie-lan Li ◽  
Wen-tiao Wu ◽  
Ling-yun Wan ◽  
...  
2008 ◽  
Vol 55-57 ◽  
pp. 857-860 ◽  
Author(s):  
Ekaphan Swatsitang ◽  
A. Pimsawat

ABINIT program package based on Density Functional Theory (DFT) within the Generalized Gradient Approximation (GGA) and plane wave basis set are used to calculate the magnetic properties of Mn doped NiO. It was found that the magnetic properties of Mn doped NiO were changed from anti-ferromagnetic (pure NiO) to ferromagnetism. Increasing the concentrations of Mn, the magnetization of Mn doped NiO were increased (Ni31MnO32 = 66.69 µB, Ni30Mn2O32 = 69.59 µB and Ni29Mn3O32 = 72.42 µB).


2019 ◽  
Author(s):  
Kamal Batra ◽  
Stefan Zahn ◽  
Thomas Heine

<p>We thoroughly benchmark time-dependent density- functional theory for the predictive calculation of UV/Vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, we compare the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density-functional theory, including the simplified Tamm-Dancoff approximation. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm-Dancoff approximation and a basis set of double-ζ quality def2-SVP (mean absolute error [MAE] of ~0.05 eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE ~0.04 eV). </p>


2019 ◽  
Vol 150 (1) ◽  
pp. 014101 ◽  
Author(s):  
Daniel A. Rehn ◽  
Yuan Shen ◽  
Marika E. Buchholz ◽  
Madan Dubey ◽  
Raju Namburu ◽  
...  

1999 ◽  
Vol 23 (8) ◽  
pp. 502-503
Author(s):  
Branko S. Jursic

High level ab initio and density functional theory studies are performed on highly protonated methane species.


Sign in / Sign up

Export Citation Format

Share Document