scholarly journals Comparison reflux and melt blending method in preparation of biodegradable plastic from high density polyethylene (HDPE) plastic waste and starch from palm oil empty fruit bunch

2020 ◽  
Author(s):  
Tengku Racmi Hidayani ◽  
Winny Iftari ◽  
Emil Salim
2014 ◽  
Vol 34 (9) ◽  
pp. 813-821 ◽  
Author(s):  
Gaurav Madhu ◽  
Haripada Bhunia ◽  
Pramod K. Bajpai ◽  
Veena Chaudhary

Abstract Polyblend films were prepared from high-density polyethylene (HDPE) and poly(l-lactic acid) (PLLA) up to 20% PLLA by the melt blending method in an extrusion mixer with post-extrusion blown film attachment. The 80/20 (HDPE/PLLA) blend was compatibilized with maleic anhydride grafted polyethylene (PE-g-MA) in varying ratios [up to 8 parts per hundred of resin (phr)]. Tensile properties of the films were evaluated to obtain optimized composition for packaging applications of both non-compatibilized and compatibilized blends. The compositions HDPE80 (80% HDPE and 20% PLLA) and HD80C4 (80% HDPE, 20% PLLA and 4 phr compatibilizer) were found to be optimum for packaging applications. However, better tensile strength (at yield) and elongation (at break) of 80/20 (HDPE/PLLA) blend were noticed in the presence of PE-g-MA. Further, thermal properties and morphologies of these blends were evaluated. Differential scanning calorimetry (DSC) study revealed that blending does not much affect the crystalline melting point of HDPE and PLLA, but heat of fusion of 80/20 (HDPE/PLLA) blend was decreased as compared to that of neat HDPE. Spectroscopy studies showed evidence of the introduction of some new groups in the blends and gaining compatibility in the presence of PE-g-MA. The compatibilizer influenced the morphology of the blends, as apparent from scanning electron microscopy (SEM) and supported by Fourier transform infrared (FTIR).


2020 ◽  
pp. 096739112097457
Author(s):  
Reza Moradkhani ◽  
Zeinab Hosseini-Dastgerdi ◽  
Mohammad Sirousazar

In this work, a series of high-density polyethylene (HDPE)/asphaltene composites were fabricated via the melt blending method. The composites were characterized, and the degradability, thermal, and mechanical stabilities of the products were analyzed. TGA results showed that HDPE/asphaltene composites had better thermal properties, e.g. higher degradation temperatures than asphaltene-free pristine HDPE. The high intermolecular interactions between the asphaltene and HDPE resulted in the degradation mechanism break, delaying the decomposition of composites and increasing their thermal stabilities. The results of DSC analysis indicated that the presence of asphaltene induces higher crystallinity and melting temperature in the composite matrix. According to the XRD results, the crystalline size was increased by increasing the asphaltene loading level due to the nucleating effect of asphaltene and the proper interactions developed between the asphaltene particles and HDPE chains. The proper dispersion of asphaltene in the composite matrix was confirmed by SEM images. The obtained results from the hardness analysis indicated higher mechanical stability for the composites, proportional to the content of the incorporated asphaltene to the composite. The results showed that asphaltene can be considered as an appropriate choice to improve the HDPE properties.


ChemInform ◽  
2015 ◽  
Vol 46 (11) ◽  
pp. no-no
Author(s):  
Anand S. Burange ◽  
Manoj B. Gawande ◽  
Frank L. Y. Lam ◽  
Radha V. Jayaram ◽  
Rafael Luque

2021 ◽  
Vol 56 (4) ◽  
pp. 82-91
Author(s):  
Dalhar Susanto ◽  
Mochamad Chalid ◽  
Widyarko ◽  
Intan Chairunnisa ◽  
Cut Sannas Saskia

The possibility of using plastic waste to manufacture hybrid bio-composite materials with the dry husk of Asian rice (Oryza sativa L.) is investigated. The most polluted and unsustainable plastic waste is High-Density Polyethylene (HDPE) due to its single-use, which decreases in quality if it is reused is selected. The mixtures chosen are local natural fiber and easy to find, potentially a preliminary study of a composites building material. Furthermore, to improve the tensile properties of this hybrid bio-composite material, an additional organic filler is used, such as rice husk (Oryza sativa L.) in a combination of 10%, 12%, and 15%. Samples for this study were processed using the hot press methods based on ASTM D882. Tested for tensile strength, modulus young, yield stress, and elongation is carried out to see an increase in the performance of the biocomposite material. The test results show that the best tensile properties are samples with 12% rice husk, resulting in excellent sample compatibility proofed by Scan Electron Microscopy to study bio-morphological composites. This project has shown that the composites based on natural fiber will be potential building materials due to their improved tensile properties.


2021 ◽  
Vol 6 (1) ◽  
pp. 23-29
Author(s):  
Taufik Iskandar ◽  
Sinar Perbawani Abrina Anggraini ◽  
Melinda Melinda

Indonesia menduduki posisi ke dua setelah cina penghasil sampah plastik terbesar di dunia. Dimana salah satu limbah plastik tersebut adalah HDPE (High Density Polyethylene). Sedangkan plastik merupakan produk hasil pengolahan minyak bumi yang dapat direcycle ke bentuk semulanya karena bahan baku pembuatan limbah plastik adalah nafta yang merupakan salah satu unsur dari minyak bumi. Salah satu solusi yang diperlukan adalah recycle dengan mengubah limbah plastik menjadi bahan bakar dengan proses pirolisis. Pirolisis merupakan salah satu proses terbaik dari recycle limbah plastik, dengan pertimbangan memahami sifat limbah plastik HDPE. Penelitian ini menggunakan alat pirolisis dengan variable suhu proses yaitu 300⸰C, 325⸰C, dan 350⸰C, waktu proses pirolisis yaitu 2 dan 4 jam. Dari proses pirolisis diperoleh hasil volume bahan bakar diesel yaitu pada suhu 300⸰C sebanyak 95 ml, suhu 325⸰C sebanyak 100 ml, dan suhu 350⸰C sebanyak 145 ml. Dari hasil analisa data optimal  untuk suhu dan waktu optimum proses pirolisis limbah plastik HDPE yaitu pada suhu 325⸰C selama 2 jam, bahan bakar diesel yang didapat memiliki kadar abu 0,044 (b/b), dan kadar air 0,031(%vol). ABSTRACTIndonesia is in second place after China, the largest plastic waste producer in the world. Where one of the plastic wastes is HDPE (High-Density Polyethylene). Meanwhile, plastic is a product of petroleum processing that can be recycled to its original form because the raw material for making plastic waste is naphtha, which is an element of petroleum. One solution that is needed to recycle by converting plastic waste into fuel by the pyrolysis process. Pyrolysis is one of the best processes for recycling plastic waste, with consideration of understanding the nature of HDPE plastic waste. This study used a pyrolysis tool with process temperature variables, namely 300⸰C, 325⸰C, and 350⸰C, the pyrolysis process time was 2 and 4 hours. From the pyrolysis process, the results of the volume of diesel fuel are at a temperature of 300 ⸰C as much as 95 ml, a temperature of 325 C as much as 100 ml, and a temperature of 350 ⸰C as much as 145 ml. From the results of the optimal data analysis for the optimum temperature and time of the HDPE plastic waste pyrolysis process, which is at a temperature of 325⸰C for 2 hours, the obtained diesel fuel has an ash content of 0.044 (w / w), and a moisture content of 0.031 (vol%).


Sign in / Sign up

Export Citation Format

Share Document