scholarly journals Combination anti-coronavirus therapies based on nonlinear mathematical models

2021 ◽  
Vol 31 (2) ◽  
pp. 023136
Author(s):  
J. A. González ◽  
Z. Akhtar ◽  
D. Andrews ◽  
S. Jimenez ◽  
L. Maldonado ◽  
...  
Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 381-389
Author(s):  
Attia Rani ◽  
Nawab Khan ◽  
Kamran Ayub ◽  
M. Yaqub Khan ◽  
Qazi Mahmood-Ul-Hassan ◽  
...  

Abstract The solution of nonlinear mathematical models has much importance and in soliton theory its worth has increased. In the present article, we have investigated the Caudrey-Dodd-Gibbon and Pochhammer-Chree equations, to discuss the physics of these equations and to attain soliton solutions. The exp(−ϕ(ζ ))-expansion technique is used to construct solitary wave solutions. A wave transformation is applied to convert the problem into the form of an ordinary differential equation. The drawn-out novel type outcomes play an essential role in the transportation of energy. It is noted that in the study, the approach is extremely reliable and it may be extended to further mathematical models signified mostly in nonlinear differential equations.


2000 ◽  
Vol 08 (04) ◽  
pp. 347-371 ◽  
Author(s):  
MINI GHOSH

In this paper, some nonlinear mathematical models are proposed and analyzed to study the spread of asthma due to inhaled pollutants from Industry. The following two types of demographics are considered here; (i) population with constant immigration, (ii) population with logistic growth. In each type of demography, the following three cases have been considered regarding the release of pollutant into the environment; (i) when emission of the pollutant into the environment is constant, (ii) when emission of the pollutant is population dependent, and (iii) when emission of the pollutant is periodic. Using stability theory of differential equations and computer simulation, it is shown that due to an increase in the air pollutant, the asthmatic (diseased) population increases in the region under consideration.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3013
Author(s):  
Leonid Shaikhet

For the example of one nonlinear mathematical model in food engineering with several equilibria and stochastic perturbations, a simple criterion for determining a stable or unstable equilibrium is reported. The obtained analytical results are illustrated by detailed numerical simulations of solutions of the considered Ito stochastic differential equations. The proposed criterion can be used for a wide class of nonlinear mathematical models in different applications.


1987 ◽  
Vol 22 (6) ◽  
pp. 571-575
Author(s):  
Yu. I. Shvets ◽  
N. M. Fialko ◽  
G. P. Sherenkovskaya ◽  
N. O. Meranova ◽  
V. S. Kovalenko ◽  
...  

2018 ◽  
Vol 7 (2.23) ◽  
pp. 9
Author(s):  
Krasinskiy A.Ya ◽  
Krasinskaya E.M.

The most important problem of controlling mechatronic systems is the development of methods for the fullest possible application of the properties of our own (without the application of controls) motions of the object for the optimal use of all available resources. The basis of this can be a non-linear mathematical model of the object, which allows to determine the degree of minimally necessary interference in the natural behavior of an object with the purpose of stable implementation of a given operating mode. The operating modes of the vast majority of modern mechatronic systems are realized due to the steady motions (equilibrium positions and stationary motions) of their mechanical components, and often these motions are constrained by connections of various kinds. The paper gives an analysis of methods for obtaining nonlinear mathematical models in stabilization problems of mechanical systems with differential holonomic and non-holonomic constraints. 


Sign in / Sign up

Export Citation Format

Share Document