The formation of a stress and deformation field by failure of the coal by explosion of a borehole charge (computer simulation)

2020 ◽  
Author(s):  
I. E. Shipovskii ◽  
V. A. Trofimov
2014 ◽  
Vol 945-949 ◽  
pp. 198-202
Author(s):  
Yu Shuo Fan ◽  
Xue Song Mao ◽  
Qing Meng Meng ◽  
Bin Bin Luo

The Qinghai-Tibet highway subgrade inhomogeneous deformation is very serious because of the bad climate environment and the special engineering condition of permafrost. To reveal the mechanism of subgrade diseases, based on the theory of elastic-plastic deformation, the control equation of the stress and deformation field of the subgrade is established. We analyze subgrade stress and deformation field by finite element software. Considering effect of the southern and northern slopes, the model of the inhomogeneous deformation of the subgrade was established. Then we calculated the variation characteristic of the lateral inhomogeneous deformation under different melting depth. The results showed that the melting interlayer, melting depth and the effect of southern and northern slopes were the key factors influencing the permafrost subgrade lateral inhomogeneous deformation.


Author(s):  
Kiyomichi Nakai ◽  
Yusuke Isobe ◽  
Chiken Kinoshita ◽  
Kazutoshi Shinohara

Induced spinodal decomposition under electron irradiation in a Ni-Au alloy has been investigated with respect to its basic mechanism and confirmed to be caused by the relaxation of coherent strain associated with modulated structure. Modulation of white-dots on structure images of modulated structure due to high-resolution electron microscopy is reduced with irradiation. In this paper the atom arrangement of the modulated structure is confirmed with computer simulation on the structure images, and the relaxation of the coherent strain is concluded to be due to the reduction of phase-modulation.Structure images of three-dimensional modulated structure along <100> were taken with the JEM-4000EX high-resolution electron microscope at the HVEM Laboratory, Kyushu University. The transmitted beam and four 200 reflections with their satellites from the modulated structure in an fee Ni-30.0at%Au alloy under illumination of 400keV electrons were used for the structure images under a condition of the spherical aberration constant of the objective lens, Cs = 1mm, the divergence of the beam, α = 3 × 10-4 rad, underfocus, Δf ≃ -50nm and specimen thickness, t ≃ 15nm. The CIHRTEM code was used for the simulation of the structure image.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


Sign in / Sign up

Export Citation Format

Share Document