A self-powered sensor for drill pipe capable of monitoring rotation speed and direction based on triboelectric nanogenerator

2021 ◽  
Vol 92 (5) ◽  
pp. 055006
Author(s):  
Qing Zhou ◽  
He Huang ◽  
Chuan Wu ◽  
Guojun Wen ◽  
Bin Liu
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuelian Wei ◽  
Zhen Wen ◽  
Yina Liu ◽  
Ningning Zhai ◽  
Aimin Wei ◽  
...  

AbstractPhotoelectrochemical hydrogen generation is a promising approach to address the environmental pollution and energy crisis. In this work, we present a hybridized mechanical and solar energy-driven self-powered hydrogen production system. A rotatory disc-shaped triboelectric nanogenerator was employed to harvest mechanical energy from water and functions as a sufficient external power source. WO3/BiVO4 heterojunction photoanode was synthesized in a PEC water-splitting cell to produce H2. After transformation and rectification, the peak current reaches 0.1 mA at the rotation speed of 60 rpm. In this case, the H2 evolution process only occurs with sunlight irradiation. When the rotation speed is over 130 rpm, the peak photocurrent and peak dark current have nearly equal value. Direct electrolysis of water is almost simultaneous with photoelectrocatalysis of water. It is worth noting that the hydrogen production rate increases to 5.45 and 7.27 μL min−1 without or with light illumination at 160 rpm. The corresponding energy conversion efficiency is calculated to be 2.43% and 2.59%, respectively. All the results demonstrate such a self-powered system can successfully achieve the PEC hydrogen generation, exhibiting promising possibility of energy conversion.


Nano Energy ◽  
2021 ◽  
Vol 84 ◽  
pp. 105887
Author(s):  
Yuankai Zhou ◽  
Maoliang Shen ◽  
Xin Cui ◽  
Yicheng Shao ◽  
Lijie Li ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengxiao Chen ◽  
Zhe Wang ◽  
Qichong Zhang ◽  
Zhixun Wang ◽  
Wei Liu ◽  
...  

AbstractThe well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection.


Nano Energy ◽  
2021 ◽  
pp. 105964
Author(s):  
Sugato Hajra ◽  
Venkateswaran Vivekananthan ◽  
Manisha Sahu ◽  
Gaurav Khandelwal ◽  
Nirmal Prashanth Maria Joseph Raj ◽  
...  

Nano Energy ◽  
2021 ◽  
Vol 84 ◽  
pp. 105918
Author(s):  
Yongyun Mao ◽  
Yong Li ◽  
Jiyang Xie ◽  
Huan Liu ◽  
Changjin Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document