Bat-optimized fuzzy controller with fractional order adaptive super-twisting sliding mode control for fuel cell/battery hybrid power system considering fuel cell degradation

2021 ◽  
Vol 13 (4) ◽  
pp. 044701
Author(s):  
Omer Abbaker AM ◽  
Haoping Wang ◽  
Yang Tian
2020 ◽  
Vol 26 (17-18) ◽  
pp. 1425-1434 ◽  
Author(s):  
Sunhua Huang ◽  
Jie Wang

In this study, a fractional-order sliding mode controller is effectively proposed to stabilize a nonlinear power system in a fixed time. State trajectories of a nonlinear power system show nonlinear behaviors on the angle and frequency of the generator, phase angle, and magnitude of the load voltage, which would seriously affect the safe and stable operation of the power grid. Therefore, fractional calculus is applied to design a fractional-order sliding mode controller which can effectively suppress the inherent chattering phenomenon in sliding mode control to make the nonlinear power system converge to the equilibrium point in a fixed time based on the fixed-time stability theory. Compared with the finite-time control method, the convergence time of the proposed fixed-time fractional-order sliding mode controller is not dependent on the initial conditions and can be exactly evaluated, thus overcoming the shortcomings of the finite-time control method. Finally, superior performances of the fractional-order sliding mode controller are effectively verified by comparing with the existing finite-time control methods and integral order sliding mode control through numerical simulations.


2011 ◽  
Vol 109 ◽  
pp. 323-332 ◽  
Author(s):  
Ali Fayazi ◽  
Amir Hossein Hadjahmadi

In this paper, a new design approach that combines the advantages in terms of robustness of the fractional control, the fuzzy scheme and the Sliding Mode Control (SMC) is proposed for robotic manipulators. A fractional order fuzzy sliding-mode controller (FOFSMC) can drive system tracking error to converge to zero in finite time. The FOFSMC is applied to a level control in robotic manipulators. Performance of the proposed controller evaluated to compare the performance with respect the conventional sliding mode controller. The simulation results demonstrate that the FOFSMC can provide a reasonable tracking performance.


2021 ◽  
Vol 7 ◽  
pp. 641-653
Author(s):  
Vigya ◽  
Tarkeshwar Mahto ◽  
Hasmat Malik ◽  
V. Mukherjee ◽  
Majed A. Alotaibi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document