scholarly journals Mechanism of temperature-induced zero drift on electro-hydraulic servo valve

AIP Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 065210
Author(s):  
Li Ma ◽  
Hao Yan ◽  
Cunkun Cai ◽  
Yukai Ren
2010 ◽  
Vol 145 ◽  
pp. 410-413 ◽  
Author(s):  
Jing Wang ◽  
He Yong Han ◽  
Qing Xue Huang ◽  
Jun Wang

The reasons for impact pressure are obtained by the research the hydraulic system of Hydraulic Rolling-Cut Shear. The impact pressure of hydraulic system is divided into direct impact and indirect impact. Based on analyzing the actual situation the measures should be taken to reduce the impact pressure when design hydraulic system. The suitable length of pipeline can improve the performance of the hydraulic system because the length is important for the impact pressure. The accumulator can absorb impact pressure and improve the work situation of servo valve. Therefore, the suitable accumulators should be set in the hydraulic system. The study provides theory basis for the pipe design of large hydraulic servo system.


2011 ◽  
Vol 402 ◽  
pp. 407-411 ◽  
Author(s):  
Jacob M. Mchenya ◽  
Sheng Zhuo Zhang ◽  
Song Jing Li

In order to understand the mechanism and get rid of the high-frequency self-excited noise in a hydraulic servo-valve, in this paper, the flow field distribution in the pilot stage of a hydraulic flapper-nozzle servo-valve is investigated. An assembly is prepared representing the construction and working principle of the flow field inside the pilot stage of a hydraulic flapper-nozzle servo-valve. A method of visualization is developed by taking videos for the flow field inside the transparent assembly with a high speed video camera. In this study, at different inlet pressure the high speed video camera was utilized for flow visualization together with computer-assisted image measurement. The shape of the jet flow, the cavitations and vortex flow inside the flow field can be visualized clearly. The proposed method enables to analyze the flow-field in the pilot stage of a hydraulic flapper-nozzle servo-valve by giving useful information for better design.


2013 ◽  
Vol 37 (3) ◽  
pp. 213-219
Author(s):  
Hwang-Hun Jeong ◽  
So-Nam Yun ◽  
Sung-Soo Lee ◽  
Joo-Ho Yang
Keyword(s):  

2018 ◽  
Vol 153 ◽  
pp. 06013
Author(s):  
Zhao Kaiyu ◽  
Wu Qingxun ◽  
Zhang Lijian ◽  
Yuan Zhaohui ◽  
Yang jiaqiang

The dynamic characteristics analysis about the jet pipe electro-hydraulic servo valve based on experience and mathematical derivation was difficult and not so precise. So we have analysed the armature feedback components, torque motor and jet pipe receiver in electrohydraulic servo valve by sophisticated finite element analysis tools respectively and have got physical meaning data on these parts. Then the data were fitted by Matlab and the mathematical relationships among them were calculated. We have done the dynamic multi-physical fields’ Simulink co-simulation using above mathematical relationship, and have got the input-output relationship of the overall valve, the frequency response and step response. This work can show the actual working condition accurately. At the same time, we have considered the materials and the impact of the critical design dimensions in the finite element analysis process. It provides some new ideas to the overall design of jet pipe electro-hydraulic servo valve.


Sign in / Sign up

Export Citation Format

Share Document