A state-of-the-art review on industry 4.0 and related key technologies

2021 ◽  
Author(s):  
Shyam Manikanawar ◽  
Vinayak N. Kulkarni ◽  
V. N. Gaitonde ◽  
G. Jangali Satish ◽  
B. B. Kotturshettar
2021 ◽  
Vol 113 (7-8) ◽  
pp. 2395-2412
Author(s):  
Baudouin Dafflon ◽  
Nejib Moalla ◽  
Yacine Ouzrout

AbstractThis work aims to review literature related to the latest cyber-physical systems (CPS) for manufacturing in the revolutionary Industry 4.0 for a comprehensive understanding of the challenges, approaches, and used techniques in this domain. Different published studies on CPS for manufacturing in Industry 4.0 paradigms through 2010 to 2019 were searched and summarized. We, then, analyzed the studies at a different granularity level inspecting the title, abstract, and full text to include in the prospective study list. Out of 626 primarily extracted relevant articles, we scrutinized 78 articles as the prospective studies on CPS for manufacturing in Industry 4.0. First, we analyzed the articles’ context to identify the major components along with their associated fine-grained constituents of Industry 4.0. Then, we reviewed different studies through a number of synthesized matrices to narrate the challenges, approaches, and used techniques as the key-enablers of the CPS for manufacturing in Industry 4.0. Although the key technologies of Industry 4.0 are the CPS, Internet of Things (IoT), and Internet of Services (IoS), the human component (HC), cyber component (CC), physical component (PC), and their HC-CC, CC-PC, and HC-PC interfaces need to be standardized to achieve the success of Industry 4.0.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Razvan Nicolescu ◽  
Michael Huth ◽  
Omar Santos

AbstractThis paper presents a new design for artificial intelligence in cyber-physical systems. We present a survey of principles, policies, design actions and key technologies for CPS, and discusses the state of art of the technology in a qualitative perspective. First, literature published between 2010 and 2021 is reviewed, and compared with the results of a qualitative empirical study that correlates world leading Industry 4.0 frameworks. Second, the study establishes the present and future techniques for increased automation in cyber-physical systems. We present the cybersecurity requirements as they are changing with the integration of artificial intelligence and internet of things in cyber-physical systems. The grounded theory methodology is applied for analysis and modelling the connections and interdependencies between edge components and automation in cyber-physical systems. In addition, the hierarchical cascading methodology is used in combination with the taxonomic classifications, to design a new integrated framework for future cyber-physical systems. The study looks at increased automation in cyber-physical systems from a technical and social level.


Author(s):  
Kadir Alpaslan Demir ◽  
Buğra Turan

The introduction of Industry 4.0 has increased the focus on a number of technologies. These technologies also help realize the vision for intelligent cities. Furthermore, there are already discussions of Industry 5.0. One emerging aspect of Industry 5.0 is human-robot co-working. With the help of artificial intelligence, the internet of things paradigm, Industry 4.0, and Industry 5.0 visions, there will be two predominant types of systems interfacing with people in intelligent cities. These are robotic and ambient intelligence systems. The increasing deployment of these will help make cities even smarter. However, we need to see advancements in a number of relevant key technologies, including power and networking technologies. In this chapter, first, the authors briefly discuss Industry 4.0, Industry 5.0, and intelligent cities paradigm, as well as robotic and ambient intelligence systems. Then, they focus on developing trends in power and networking technologies.


Author(s):  
Banu Çalış Uslu ◽  
Seniye Ümit Oktay Fırat

Under uncertainty, understanding and controlling complex environments is only possible with an ability to use distributed computing by the way of information exchange between devices to be able to understand the response of the system to a particular problem. From transformation of raw data in a huge distribution of network into the meaningful information, to use the understood knowledge to make rapid decisions needs to have a network composed of smart devices. Internet of things (IoT) is a novel approach, where these smart devices can communicate with each other by using key technologies of artificial intelligence (AI) in order to make timely autonomous decisions. This emerging technical advancement and realization of horizontal and vertical integration caused the fourth stage of industrialization (Industry 4.0). The objective of this chapter is to give detailed information on both IoT based on key AI technologies and Industry 4.0. It is expected to shed light on new work to be done by providing explanations about the new areas that will emerge with this new technology.


2020 ◽  
Vol 12 (14) ◽  
pp. 5650 ◽  
Author(s):  
Krzysztof Ejsmont ◽  
Bartlomiej Gladysz ◽  
Aldona Kluczek

Nowadays, sustainability and Industry 4.0 (I4.0) are trending concepts used in the literature on industrial processes. Industry 4.0 has been mainly addressed by the current literature from a technological perspective, overlooking sustainability challenges regarding this recent paradigm. The objective of this paper is to evaluate the state of the art of relations between sustainability and I4.0. The goal will be met by (1) mapping and summarizing existing research efforts, (2) identifying research agendas, (3) examining gaps and opportunities for further research. Web of Science, Scopus, and a set of specific keywords were used to select peer-reviewed papers presenting evidence on the relationship between sustainability and I4.0. To achieve this goal, it was decided to use a dynamic methodology called “systematic literature network analysis”. This methodology combines a systematic literature review approach with the analysis of bibliographic networks. Selected papers were used to build a reference framework formed by I4.0 technologies and sustainability issues. The paper contributes to the Sustainable Industry 4.0 reference framework with application procedures. It aims to show how I4.0 can support ideas of sustainability. The results showed that apart from a huge contribution to both concepts, many papers do not provide an insight into realization of initiatives to introduce Sustainable Industry 4.0.


Semantic Web ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 885-886
Author(s):  
Dhavalkumar Thakker ◽  
Pankesh Patel ◽  
Muhammad Intizar Ali ◽  
Tejal Shah

Welcome to this special issue of the Semantic Web (SWJ) journal. The special issue compiles four technical contributions that significantly advance the state-of-the-art in Semantic Web of Things for Industry 4.0 including the use of Semantic Web technologies and techniques in Industry 4.0 solutions.


2006 ◽  
Vol 53 (4-5) ◽  
pp. 1-16 ◽  
Author(s):  
G. Olsson

Instrumentation, control and automation (ICA) are key technologies in modern water and wastewater systems. Ever present disturbances make it necessary to automatically attenuate their consequences. A wastewater treatment system is load driven, while a water distribution system is demand driven. Despite the variability the system outputs have to be satisfactory. Economic realities encourages the application of ICA to make a maximum use of plant capacities. An increasing complexity of competing processes in a modern nutrient removal plant makes more elaborate control necessary. The final goal of protecting the environmental resources necessitates an integrated view of several interdependent systems, the collection, transport and treatment processes. In this integrating development ICA will be a decisive technology.


2021 ◽  
Vol 166 ◽  
pp. 125-139
Author(s):  
Praveen Kumar Malik ◽  
Rohit Sharma ◽  
Rajesh Singh ◽  
Anita Gehlot ◽  
Suresh Chandra Satapathy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document