The effect of Ni doping in powder-in-tube-MgB2 material

2021 ◽  
Author(s):  
Hendrik ◽  
Satrio Herbirowo ◽  
Didik Aryanto ◽  
Heri Nugraha ◽  
Nono Darsono ◽  
...  
Keyword(s):  

Author(s):  
Junjie Quan ◽  
Enze Xu ◽  
Hanwen Zhu ◽  
Yajing Chang ◽  
Yi Zhu ◽  
...  

Prussian blue analogues are potential competitive energy storage materials due to its diverse metal combinations and wide three-dimensional ion channels. Here, we prepared a new high crystalline monoclinic nickel doped...



ACS Catalysis ◽  
2021 ◽  
pp. 5601-5613
Author(s):  
Yuman Peng ◽  
Hamidreza Hajiyani ◽  
Rossitza Pentcheva
Keyword(s):  


Vacuum ◽  
2021 ◽  
pp. 110351
Author(s):  
Vilius Dovydaitis ◽  
Liutauras Marcinauskas ◽  
Paola Ayala ◽  
Enrico Gnecco ◽  
Johnny Chimborazo ◽  
...  


1995 ◽  
Vol 3 (1-3) ◽  
pp. 15-19
Author(s):  
S.J. Chen ◽  
T. Haugan ◽  
S. Patel ◽  
D.T. Shaw


Talanta ◽  
2021 ◽  
Vol 228 ◽  
pp. 122228
Author(s):  
Linna Guo ◽  
Lin Hao ◽  
Yufan Zhang ◽  
Xiumin Yang ◽  
Qianqian Wang ◽  
...  


Author(s):  
Zhigang Zak Fang ◽  
Chai Ren ◽  
Marty Simmons ◽  
Pei Sun


2021 ◽  
Vol 5 (4) ◽  
Author(s):  
B. C. Sales ◽  
W. R. Meier ◽  
A. F. May ◽  
J. Xing ◽  
J.-Q. Yan ◽  
...  
Keyword(s):  


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 486
Author(s):  
Aleksandar Zivković ◽  
Michiel Somers ◽  
Eloi Camprubi ◽  
Helen E. King ◽  
Mariette Wolthers ◽  
...  

Metal sulphides constitute cheap, naturally abundant, and environmentally friendly materials for energy storage applications and chemistry. In particular, iron (II) monosulphide (FeS, mackinawite) is a material of relevance in theories of the origin of life and for heterogenous catalytic applications in the conversion of carbon dioxide (CO2) towards small organic molecules. In natural mackinawite, Fe is often substituted by other metals, however, little is known about how such substitutions alter the chemical activity of the material. Herein, the effect of Ni doping on the structural, electronic, and catalytic properties of FeS surfaces is explored via dispersion-corrected density functional theory simulations. Substitutional Ni dopants, introduced on the Fe site, are readily incorporated into the pristine matrix of FeS, in good agreement with experimental measurements. The CO2 molecule was found to undergo deactivation and partial desorption from the doped surfaces, mainly at the Ni site when compared to undoped FeS surfaces. This behaviour is attributed to the energetically lowered d-band centre position of the doped surface, as a consequence of the increased number of paired electrons originating from the Ni dopant. The reaction and activation energies of CO2 dissociation atop the doped surfaces were found to be increased when compared to pristine surfaces, thus helping to further elucidate the role Ni could have played in the reactivity of FeS. It is expected that Ni doping in other Fe-sulphides may have a similar effect, limiting the catalytic activity of these phases when this dopant is present at their surfaces.



Sign in / Sign up

Export Citation Format

Share Document