Optimal Replacement and Maintenance of Urban Infrastructure

1987 ◽  
Vol 19 (8) ◽  
pp. 1115-1121 ◽  
Author(s):  
P F Lesse ◽  
J R Roy

The theory of optimal control is used to derive the optimal policy for maintenance and replacement of the capital invested into deteriorating infrastructure networks or facilities. Depending on economic conditions, the optimal policy consists either in maintaining the infrastructure indefinitely at its initial level, or in letting it run down and postponing its replacement as long as possible.

2007 ◽  
Vol 22 (1) ◽  
pp. 107-131 ◽  
Author(s):  
Dimitrios G. Pandelis

We consider two-stage tandem queuing systems with dedicated servers in each station and flexible servers that can serve in both stations. We assume exponential service times, linear holding costs, and operating costs incurred by the servers at rates proportional to their speeds. Under conditions that ensure the optimality of nonidling policies, we show that the optimal allocation of flexible servers is determined by a transition-monotone policy. Moreover, we present conditions under which the optimal policy can be explicitly determined.


Author(s):  
Pamela Badian-Pessot ◽  
Mark E. Lewis ◽  
Douglas G. Down

AbstractWe consider an M/M/1 queue with a removable server that dynamically chooses its service rate from a set of finitely many rates. If the server is off, the system must warm up for a random, exponentially distributed amount of time, before it can begin processing jobs. We show under the average cost criterion, that work conserving policies are optimal. We then demonstrate the optimal policy can be characterized by a threshold for turning on the server and the optimal service rate increases monotonically with the number in system. Finally, we present some numerical experiments to provide insights into the practicality of having both a removable server and service rate control.


Author(s):  
Subhas Khajanchi

AbstractWe investigate a mathematical model using a system of coupled ordinary differential equations, which describes the interplay of malignant glioma cells, macrophages, glioma specific CD8+T cells and the immunotherapeutic drug Adoptive Cellular Immunotherapy (ACI). To better understand under what circumstances the glioma cells can be eliminated, we employ the theory of optimal control. We investigate the dynamics of the system by observing biologically feasible equilibrium points and their stability analysis before administration of the external therapy ACI. We solve an optimal control problem with an objective functional which minimizes the glioma cell burden as well as the side effects of the treatment. We characterize our optimal control in terms of the solutions to the optimality system, in which the state system coupled with the adjoint system. Our model simulation demonstrates that the strength of treatment $u_{1}(t)$ plays an important role to eliminate the glioma cells. Finally, we derive an optimal treatment strategy and then solve it numerically.


2019 ◽  
Vol 25 ◽  
pp. 15 ◽  
Author(s):  
Manh Khang Dao

We consider an optimal control on networks in the spirit of the works of Achdou et al. [NoDEA Nonlinear Differ. Equ. Appl. 20 (2013) 413–445] and Imbert et al. [ESAIM: COCV 19 (2013) 129–166]. The main new feature is that there are entry (or exit) costs at the edges of the network leading to a possible discontinuous value function. We characterize the value function as the unique viscosity solution of a new Hamilton-Jacobi system. The uniqueness is a consequence of a comparison principle for which we give two different proofs, one with arguments from the theory of optimal control inspired by Achdou et al. [ESAIM: COCV 21 (2015) 876–899] and one based on partial differential equations techniques inspired by a recent work of Lions and Souganidis [Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016) 535–545].


Sign in / Sign up

Export Citation Format

Share Document