Visual Apparent Movement: Transformations of Size and Orientation

Perception ◽  
1983 ◽  
Vol 12 (5) ◽  
pp. 549-558 ◽  
Author(s):  
Claus Bundesen ◽  
Axel Larsen ◽  
Joyce E Farrell

Sequential alternation between same-shaped stimuli differing in size (size ratio s) and orientation (angular difference v) produced a visual illusion of translation in depth and concurrent rotation. The minimum stimulus-onset asynchrony required for the appearance of a rigidly moving object was approximately a linearly increasing function of ( s− 1)/( s + 1) for simple translation in depth and a linearly increasing function of v for simple rotation. The extrapolated zero intercept was lower for translation than for rotation, but estimated transformation times were additive in combined transformations. The results suggest that (a) the processes of apparent translation in depth and apparent rotation are individually sequential-additive in structure, and (b) apparent translations and rotations are combined by fine-grained alternation of steps of apparent translation and steps of apparent rotation. Similar principles account for recent data on imagined spatial transformations of visual size and orientation.

Perception ◽  
1982 ◽  
Vol 11 (5) ◽  
pp. 541-546 ◽  
Author(s):  
Joyce E Farrell ◽  
Axel Larsen ◽  
Claus Bundesen

The visual illusion of apparent rigid rotation was produced by sequential alternation of two views of the same object in different orientations. The minimum stimulus-onset asynchrony required for the appearance of rigid rotation was a linearly increasing function of the angular difference in orientation between the two views. Variation in the size of the object affected the zero-intercept of the function, but the slope was virtually constant. The slope invariance suggests that the appearance of rigid rotation is constrained by an upper bound on the apparent angular velocity of the object as a whole, rather than a bound on the linear velocity of its parts.


1975 ◽  
Vol 41 (3) ◽  
pp. 791-796 ◽  
Author(s):  
Johannes Abresch ◽  
Viktor Sarris

Perceptual contrast effect was studied from two points of view, as a special anchor effect and as a special figural aftereffect. Two experiments were conducted to investigate the influence of stimulus onset asynchrony on contrast and assimilation effects, induced and measured by different psychophysical methods. Stimuli were circular beams of light projected on screens (Delboef type of illusion). When anchor and series stimuli were shown and the latter were judged by means of a rating scale, stimulus onset asychrony had no substantial influence on the contrast effect (Exp. I). When the constant method was applied, however, the asynchrony altered the shape of the contrast effect considerably (Exp. II).


1986 ◽  
Vol 61 (1) ◽  
pp. 17-36 ◽  
Author(s):  
Annette M.B. de Groot ◽  
Arnold J.W.M. Thomassen ◽  
Patrick T.W. Hudson

2017 ◽  
Vol 22 (3) ◽  
pp. 199-227 ◽  
Author(s):  
Ciara K. Kidder ◽  
Katherine R. White ◽  
Michelle R. Hinojos ◽  
Mayra Sandoval ◽  
Stephen L. Crites

Psychological interest in stereotype measurement has spanned nearly a century, with researchers adopting implicit measures in the 1980s to complement explicit measures. One of the most frequently used implicit measures of stereotypes is the sequential priming paradigm. The current meta-analysis examines stereotype priming, focusing specifically on this paradigm. To contribute to ongoing discussions regarding methodological rigor in social psychology, one primary goal was to identify methodological moderators of the stereotype priming effect—whether priming is due to a relation between the prime and target stimuli, the prime and target response, participant task, stereotype dimension, stimulus onset asynchrony (SOA), and stimuli type. Data from 39 studies yielded 87 individual effect sizes from 5,497 participants. Analyses revealed that stereotype priming is significantly moderated by the presence of prime–response relations, participant task, stereotype dimension, target stimulus type, SOA, and prime repetition. These results carry both practical and theoretical implications for future research on stereotype priming.


2016 ◽  
Vol 116 (5) ◽  
pp. 2125-2139 ◽  
Author(s):  
Tobias Teichert ◽  
Kate Gurnsey ◽  
Dean Salisbury ◽  
Robert A. Sweet

Auditory refractoriness refers to the finding of smaller electroencephalographic (EEG) responses to tones preceded by shorter periods of silence. To date, its physiological mechanisms remain unclear, limiting the insights gained from findings of abnormal refractoriness in individuals with schizophrenia. To resolve this roadblock, we studied auditory refractoriness in the rhesus, one of the most important animal models of auditory function, using grids of up to 32 chronically implanted cranial EEG electrodes. Four macaques passively listened to sounds whose identity and timing was random, thus preventing animals from forming valid predictions about upcoming sounds. Stimulus onset asynchrony ranged between 0.2 and 12.8 s, thus encompassing the clinically relevant timescale of refractoriness. Our results show refractoriness in all 8 previously identified middle- and long-latency components that peaked between 14 and 170 ms after tone onset. Refractoriness may reflect the formation and gradual decay of a basic sensory memory trace that may be mirrored by the expenditure and gradual recovery of a limited physiological resource that determines generator excitability. For all 8 components, results were consistent with the assumption that processing of each tone expends ∼65% of the available resource. Differences between components are caused by how quickly the resource recovers. Recovery time constants of different components ranged between 0.5 and 2 s. This work provides a solid conceptual, methodological, and computational foundation to dissect the physiological mechanisms of auditory refractoriness in the rhesus. Such knowledge may, in turn, help develop novel pharmacological, mechanism-targeted interventions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251117
Author(s):  
Andrea Polzien ◽  
Iris Güldenpenning ◽  
Matthias Weigelt

In many kinds of sports, deceptive actions are frequently used to hamper the anticipation of an opponent. The head fake in basketball is often applied to deceive an observer regarding the direction of a pass. To perform a head fake, a basketball player turns the head in one direction, but passes the ball to the opposite direction. Several studies showed that reactions to passes with head fakes are slower and more error-prone than to passes without head fakes (head-fake effect). The aim of a basketball player is to produce a head-fake effect for as large as possible in the opponent. The question if the timing of the deceptive action influences the size of the head-fake effect has not yet been examined systematically. The present study investigated if the head-fake effect depends on the temporal lag between the head turn and the passing movement. To this end, the stimulus onset asynchrony between head turn, and pass was varied between 0 and 800 ms. The results showed the largest effect when the head turn precedes the pass by 300 ms. This result can be explained better by facilitating the processing of passes without head fake than by making it more difficult to process passes with a head fake. This result is discussed regarding practical implications and conclusions about the underlying mechanism of the head–fake effect in basketball are drawn.


Perception ◽  
10.1068/p5844 ◽  
2007 ◽  
Vol 36 (10) ◽  
pp. 1455-1464 ◽  
Author(s):  
Vanessa Harrar ◽  
Laurence R Harris

Gestalt rules that describe how visual stimuli are grouped also apply to sounds, but it is unknown if the Gestalt rules also apply to tactile or uniquely multimodal stimuli. To investigate these rules, we used lights, touches, and a combination of lights and touches, arranged in a classic Ternus configuration. Three stimuli (A, B, C) were arranged in a row across three fingers. A and B were presented for 50 ms and, after a delay, B and C were presented for 50 ms. Subjects were asked whether they perceived AB moving to BC (group motion) or A moving to C (element motion). For all three types of stimuli, at short delays, A to C dominated, while at longer delays AB to BC dominated. The critical delay, where perception changed from group to element motion, was significantly different for the visual Ternus (3 lights, 162 ms) and the tactile Ternus (3 touches, 195 ms). The critical delay for the multimodal Ternus (3 light – touch pairs, 161 ms) was not different from the visual or tactile Ternus effects. In a second experiment, subjects were exposed to 2.5 min of visual group motion (stimulus onset asynchrony = 300 ms). The exposure caused a shift in the critical delay of the visual Ternus, a trend in the same direction for the multimodal Ternus, but no shift in the tactile Ternus. These results suggest separate but similar grouping rules for visual, tactile, and multimodal stimuli.


Sign in / Sign up

Export Citation Format

Share Document