Biological Motion Shown Backwards: The Apparent-Facing Effect

Perception ◽  
10.1068/p3262 ◽  
2002 ◽  
Vol 31 (4) ◽  
pp. 435-443 ◽  
Author(s):  
Marina Pavlova ◽  
Ingeborg Krägeloh-Mann ◽  
Niels Birbaumer ◽  
Alexander Sokolov

We examined how showing a film backwards (reverse transformation) affects the visual perception of biological motion. Adults and 6-year-old children saw first a point-light quadruped moving normally as if on a treadmill, and then saw the same display in reverse transformation. For other groups the order of presentation was the opposite. Irrespective of the presentation mode (normal or reverse) and of the facing of the point-light figure (rightward or leftward), a pronounced apparent-facing effect was observed: the perceptual identification of a display was mainly determined by the apparent direction of locomotion. The findings suggest that in interpreting impoverished point-light biological-motion stimuli the visual system may neglect distortions caused by showing a film backwards. This property appears to be robust across perceptual development. Possible explanations of the apparent-facing effect are discussed.

2020 ◽  
Vol 3 (1) ◽  
pp. 10402-1-10402-11
Author(s):  
Viswadeep Sarangi ◽  
Adar Pelah ◽  
William Edward Hahn ◽  
Elan Barenholtz

Abstract Humans are adept at perceiving biological motion for purposes such as the discrimination of gender. Observers classify the gender of a walker at significantly above chance levels from a point-light distribution of joint trajectories. However, performance drops to chance level or below for vertically inverted stimuli, a phenomenon known as the inversion effect. This lack of robustness may reflect either a generic learning mechanism that has been exposed to insufficient instances of inverted stimuli or the activation of specialized mechanisms that are pre-tuned to upright stimuli. To address this issue, the authors compare the psychophysical performance of humans with the computational performance of neuromimetic machine-learning models in the classification of gender from gait by using the same biological motion stimulus set. Experimental results demonstrate significant similarities, which include those in the predominance of kinematic motion cues over structural cues in classification accuracy. Second, learning is expressed in the presence of the inversion effect in the models as in humans, suggesting that humans may use generic learning systems in the perception of biological motion in this task. Finally, modifications are applied to the model based on human perception, which mitigates the inversion effect and improves performance accuracy. The study proposes a paradigm for the investigation of human gender perception from gait and makes use of perceptual characteristics to develop a robust artificial gait classifier for potential applications such as clinical movement analysis.


10.1167/6.8.6 ◽  
2006 ◽  
Vol 6 (8) ◽  
pp. 6 ◽  
Author(s):  
Joachim Lange ◽  
Karsten Georg ◽  
Markus Lappe

2011 ◽  
Vol 137 (3) ◽  
pp. 330-334 ◽  
Author(s):  
Christel Bidet-Ildei ◽  
Laurent Sparrow ◽  
Yann Coello

2002 ◽  
Vol 13 (2) ◽  
pp. 162-167 ◽  
Author(s):  
Heather Jordan ◽  
Jason E. Reiss ◽  
James E. Hoffman ◽  
Barbara Landau

Williams syndrome (WS) is a rare genetic disorder that results in profound spatial cognitive deficits. We examined whether individuals with WS have intact perception of biological motion, which requires global spatial integration of local motion signals into a unitary percept of a human form. Children with WS, normal mental-age-matched children, and normal adults viewed point-light-walker (PLW) displays portraying a human figure walking to the left or right. Children with WS were as good as or better than control children in their ability to judge the walker's direction, even when it was masked with dynamic noise that mimicked the local motion of the PLW lights. These results show that mechanisms underlying the perception of at least some kinds of biological motion are unimpaired in children with WS. They provide the first evidence of selective sparing of a specialized spatial system in individuals with a known genetic impairment.


Psihologija ◽  
2010 ◽  
Vol 43 (1) ◽  
pp. 5-20 ◽  
Author(s):  
Chandramouli Chandrasekaran ◽  
Lucy Turner ◽  
Heinrich Bülthoff ◽  
Ian Thornton

Our ability to see meaningful actions when presented with point-light traces of human movement is commonly referred to as the perception of biological motion. While traditional explanations have emphasized the spontaneous and automatic nature of this ability, more recent findings suggest that attention may play a larger role than is typically assumed. In two studies we show that the speed and accuracy of responding to point-light stimuli is highly correlated with the ability to control selective attention. In our first experiment we measured thresholds for determining the walking direction of a masked point-light figure, and performance on a range of attention-related tasks in the same set of observers. Mask-density thresholds for the direction discrimination task varied quite considerably from observer to observer and this variation was highly correlated with performance on both Stroop and flanker interference tasks. Other components of attention, such as orienting, alerting and visual search efficiency, showed no such relationship. In a second experiment, we examined the relationship between the ability to determine the orientation of unmasked point-light actions and Stroop interference, again finding a strong correlation. Our results are consistent with previous research suggesting that biological motion processing may requite attention, and specifically implicate networks of attention related to executive control and selection.


Neuron ◽  
2002 ◽  
Vol 35 (6) ◽  
pp. 1167-1175 ◽  
Author(s):  
Emily D Grossman ◽  
Randolph Blake

2008 ◽  
Vol 25 (7) ◽  
pp. E15-E25 ◽  
Author(s):  
Jejoong Kim ◽  
Randolph Blake ◽  
Sohee Park ◽  
Yong-Wook Shin ◽  
Do-Hyung Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document