On the growth of graded algebras with a small number of defining relations

1993 ◽  
Vol 48 (3) ◽  
pp. 211-212 ◽  
Author(s):  
D I Piotkovskii
2021 ◽  
Vol 9 ◽  
Author(s):  
Stefan Kolb ◽  
Milen Yakimov

Abstract We explicitly determine the defining relations of all quantum symmetric pair coideal subalgebras of quantised enveloping algebras of Kac–Moody type. Our methods are based on star products on noncommutative ${\mathbb N}$ -graded algebras. The resulting defining relations are expressed in terms of continuous q-Hermite polynomials and a new family of deformed Chebyshev polynomials.


2020 ◽  
Vol 32 (6) ◽  
pp. 1395-1406
Author(s):  
Joseph Chuang ◽  
Andrey Lazarev

AbstractWe show that the notions of homotopy epimorphism and homological epimorphism in the category of differential graded algebras are equivalent. As an application we obtain a characterization of acyclic maps of topological spaces in terms of induced maps of their chain algebras of based loop spaces. In the case of a universal acyclic map we obtain, for a wide class of spaces, an explicit algebraic description for these induced maps in terms of derived localization.


2002 ◽  
Vol 17 (17) ◽  
pp. 2331-2349 ◽  
Author(s):  
GERRIT HANDRICH

To postulate correspondence for the observables only is a promising approach to a fully satisfying quantization of the Nambu–Goto string. The relationship between the Poisson algebra of observables and the corresponding quantum algebra is established in the language of generators and relations. A very valuable tool is the transformation to the string's rest frame, since a substantial part of the relations are solved. It is the aim of this paper to clarify the relationship between the fully covariant and the rest frame description. Both in the classical and in the quantum case, an efficient method for recovering the covariant algebra from the one in the rest frame is described. Restrictions on the quantum defining relations are obtained, which are not taken into account when one postulates correspondence for the rest frame algebra. For the part of the algebra studied up to now in explicit computations, these further restrictions alone determine the quantum algebra uniquely — in full consistency with the further restrictions found in the rest frame.


2009 ◽  
Vol 19 (03) ◽  
pp. 287-303 ◽  
Author(s):  
ISABEL GOFFA ◽  
ERIC JESPERS ◽  
JAN OKNIŃSKI

Let A be a finitely generated commutative algebra over a field K with a presentation A = K 〈X1,…, Xn | R〉, where R is a set of monomial relations in the generators X1,…, Xn. So A = K[S], the semigroup algebra of the monoid S = 〈X1,…, Xn | R〉. We characterize, purely in terms of the defining relations, when A is an integrally closed domain, provided R contains at most two relations. Also the class group of such algebras A is calculated.


2022 ◽  
Vol 275 (1352) ◽  
Author(s):  
Bernhard Mühlherr ◽  
Richard Weiss ◽  
Holger Petersson

We introduce the notion of a Tits polygon, a generalization of the notion of a Moufang polygon, and show that Tits polygons arise in a natural way from certain configurations of parabolic subgroups in an arbitrary spherical buildings satisfying the Moufang condition. We establish numerous basic properties of Tits polygons and characterize a large class of Tits hexagons in terms of Jordan algebras. We apply this classification to give a “rank  2 2 ” presentation for the group of F F -rational points of an arbitrary exceptional simple group of F F -rank at least  4 4 and to determine defining relations for the group of F F -rational points of an an arbitrary group of F F -rank  1 1 and absolute type D 4 D_4 , E 6 E_6 , E 7 E_7 or E 8 E_8 associated to the unique vertex of the Dynkin diagram that is not orthogonal to the highest root. All of these results are over a field of arbitrary characteristic.


1982 ◽  
pp. 155-159
Author(s):  
D.G. Arrell ◽  
S. Manrai ◽  
M.F. Worboys
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document