Low-salinity waterflooding in non-polar oil

2018 ◽  
Vol 58 (2) ◽  
pp. 660
Author(s):  
A. Al-Sarihi ◽  
A. Zeinijahromi ◽  
P. Bedrikovetsky

Enhanced oil recovery by low-salinity waterflooding is considered to have positive results only when polar components exist in oil. This study shows that low-salinity brine can result in incremental recovery for non-polar oil through fines-assisted waterflooding. Despite the traditional view of fines migration that it should be avoided because of its detrimental effect on reservoir permeability, this work shows that permeability decline is a main mechanism in the low-salinity effect on non-polar oil. Laboratory coreflood tests were performed on a clay-rich Berea outcrop core and a clean sand core to investigate the effect of clay migration when the core is saturated with non-polar oil. The results show that fines migration reduces residual saturation by 18%. In addition, a decrease in the water volume production was observed due to the decrease in water relative permeability.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Mehdi Koleini ◽  
Mohammad Hasan Badizad ◽  
Hassan Mahani ◽  
Ali Mirzaalian Dastjerdi ◽  
Shahab Ayatollahi ◽  
...  

AbstractThis paper resolve the salinity-dependent interactions of polar components of crude oil at calcite-brine interface in atomic resolution. Molecular dynamics simulations carried out on the present study showed that ordered water monolayers develop immediate to a calcite substrate in contact with a saline solution. Carboxylic compounds, herein represented by benzoic acid (BA), penetrate into those hydration layers and directly linking to the calcite surface. Through a mechanism termed screening effect, development of hydrogen bonding between –COOH functional groups of BA and carbonate groups is inhibited by formation of a positively-charged Na+ layer over CaCO3 surface. Contrary to the common perception, a sodium-depleted solution potentially intensifies surface adsorption of polar hydrocarbons onto carbonate substrates; thus, shifting wetting characteristic to hydrophobic condition. In the context of enhanced oil recovery, an ion-engineered waterflooding would be more effective than injecting a solely diluted saltwater.


AAPG Bulletin ◽  
2017 ◽  
Vol 101 (01) ◽  
pp. 1-18 ◽  
Author(s):  
Mark Person ◽  
John L. Wilson ◽  
Norman Morrow ◽  
Vincent E.A. Post

2018 ◽  
Author(s):  
Abdullah Al-Sarihi ◽  
Abbas Zeinijahromi ◽  
Luis Genolet ◽  
Aron Behr ◽  
Patrick Kowollik ◽  
...  

2019 ◽  
Vol 177 ◽  
pp. 766-785 ◽  
Author(s):  
L. Chequer ◽  
K. Al-Shuaili ◽  
L. Genolet ◽  
A. Behr ◽  
P. Kowollik ◽  
...  

Author(s):  
Tao Zhang ◽  
Yiteng Li ◽  
Chenguang Li ◽  
Shuyu Sun

The past decades have witnessed a rapid development of enhanced oil recovery techniques, among which the effect of salinity has become a very attractive topic due to its significant advantages on environmental protection and economical benefits. Numerous studies have been reported focusing on analysis of the mechanisms behind low salinity waterflooding in order to better design the injected salinity under various working conditions and reservoir properties. However, the effect of injection salinity on pipeline scaling has not been widely studied, but this mechanism is important to gathering, transportation and storage for petroleum industry. In this paper, an exhaustive literature review is conducted to summarize several well-recognized and widely accepted mechanisms, including fine migration, wettability alteration, double layer expansion, and multicomponent ion exchange. These mechanisms can be correlated with each other, and certain combined effects may be defined as other mechanisms. In order to mathematically model and numerically describe the fluid behaviors in injection pipelines considering injection salinity, an exploratory phase-field model is presented to simulate the multiphase flow in injection pipeline where scale formation may take place. The effect of injection salinity is represented by the scaling tendency to describe the possibility of scale formation when the scaling species are attached to the scaled structure. It can be easily referred from the simulation result that flow and scaling conditions are significantly affected if a salinity-dependent scaling tendency is considered. Thus, this mechanism should be taken into account in the design of injection process if a sustainable exploitation technique is applied by using purified production water as injection fluid. Finally, remarks and suggestions are provided based on our extensive review and preliminary investigation, to help inspire the future discussions.


Sign in / Sign up

Export Citation Format

Share Document