polar components
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 40)

H-INDEX

25
(FIVE YEARS 3)

Author(s):  
Kevin Nsolloh Lichinga ◽  
Amos Luanda ◽  
Mtabazi Geofrey Sahini

AbstractThe main objective of this study is to improve the oil-based filtercake removal at the wellbore second interface through chemical method. The reductions in near-well permeability, bonding strength at wellbore second interface and acidizing treatment are the critical problems in oilfield upstream operations. One of the major causes has been identified as drilling fluid filtrate invasion during the drilling operations. This as result leads to near-well reduction in-flow capacity due to high drawdown pressure and wellbore instability. A number of chemical methods such as enzymes, acids, oxidizers, or their hybrids, have been used, however, due to the presence of a number of factors prior to its removal, there are still many challenges in cleaning oil-based filtercake from the wellbore surface. There is a need for development an effective method for improving oil-based filtercake removal. This study presents a novel Alkali-Surfactant (KV-MA) solution developed in the laboratory to optimize the filtercake removal of oil–gas wellbore. The Reynold number for KV-MA solution was found to be 9,068 indicating that turbulent flow regime will dominate in the annulus which enhances the cleaning efficiency. The wettability test established that, contact angle of 14° was a proper wetting agent. The calculated cleaning efficiency was 86.9%, indicating that it can effectively remove the oil-based filtercake. NaOH reacts with the polar components in the oil phase of the oil-based filtercake to produce ionized surface-active species; hence reducing the Interfacial Tension. Surfactant quickens the diffusion of ionized species from the interface to the bulk phase.


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 48
Author(s):  
Yuliya Frolova ◽  
Varuzhan Sarkisyan ◽  
Roman Sobolev ◽  
Mariia Makarenko ◽  
Michael Semin ◽  
...  

This study aimed to find relationships between the properties of beeswax-based oleogels and the type of oil used. The influence of linseed, sunflower, olive, and fish oils was studied. For these oils, the fatty acid composition, the content of total polar components, and the iodine value were characterized. Textural and thermodynamic properties were determined for oleogels, the oil-binding capacity was estimated, and the morphology of crystals was studied. The concentration of beeswax in all oleogels was 6.0% w/w. It was shown that the type of oil has a significant influence on all characteristics of the oleogels. The use of different oils at the same technological treatment leads to the formation of crystals of diverse morphology—from platelets to spherulites. At the same time, it was revealed that some characteristics of oils have a varying contribution to the properties of oleogels. The content of total polar materials in oils is associated with a decrease in strength parameters (yield value and elastic modulus) and the oil-binding capacity of oleogels. In its turn, the iodine value of oils has a close positive correlation with the melting and crystallization temperatures of oleogels. The results obtained in this article indicate that the properties of beeswax-based oleogels can be directed by changing the oil composition.


Author(s):  
Р.Р. Зиннатуллин ◽  
Л.А. Ковалева

The degree of influence of the electromagnetic field on oil dispersed systems depends on the dielectric properties of these systems, in particular oil. Dielectric properties of oil depend on the content of high molecular weight polar components: asphaltenes and resins. In this regard, a study was carried out of the dielectric properties of oil in the radio-frequency range, depending on the content of asphalt-resinous substances in it. The obtained results of experimental studies show the correlation of dielectric parameters with the ratio of the content of resins and asphaltenes in oil.


LWT ◽  
2021 ◽  
pp. 112940
Author(s):  
Ting-Ting Ye ◽  
Jie Liu ◽  
Peng Wan ◽  
Si-Yi Liu ◽  
Qin-Zhi Wang ◽  
...  
Keyword(s):  

Author(s):  
Yuko Tsutsui Ito ◽  
Takahiro KOZAWA

Abstract With the sharpening of optical images, the capability of resist materials has become a serious concern in lithography. The dissolution of a resist polymer is key to the realization of ultrafine patterning. However, the details of the dissolution of resist polymers remain unclarified. In this study, the relationships of surface free energy with swelling and dissolution kinetics were investigated using poly(4-hydroxystyrene) (PHS) film with triphenylsulfonium-nonaflate (TPS-nf). Developers were water and 2.38 wt% tetramethylammonium hydroxide (TMAH) aqueous solution. PHS and TPS-nf are a typical backbone polymer (a dissolution agent) and a typical acid generator of chemically amplified resists, respectively. The water intake and dissolution of PHS film with TPS-nf became fast with increasing UV exposure dose. It was found that the increase in the polar components (particularly, the hydrogen bonding component) and the decrease in the dispersion component of surface free energy underlie the fast water intake and dissolution.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Xinming Zhao ◽  
Minmin Xia ◽  
Peng Li ◽  
Jianwei Wang ◽  
Yunfei Xu ◽  
...  

Abstract To ensure the efficient operation of crude oil dehydration and sewage treatment technology in oilfield surface production system, the effect mechanism of polar components represented by asphaltene and resin on the formation and stability of oil-water emulsion needs to be revealed at nanoscale. In this paper, the molecular dynamics simulation method was used to construct the crude oil/polar component/water system models with different molar ratios of asphaltene to resin by adjusting the number of asphaltene and resin molecules, so as to reveal the molecular arrangement and aggregation process and film forming characteristics of asphaltene, resin, and their mixture at the oil-water interface. The simulated results showed that the aggregation process of asphaltene molecules under the influence of hydrogen bonds can be divided into three stages. The addition of resin molecules enhanced the connection between molecules of all polar components at the interface. The π−π stacking and T-shaped stacking structures were found in all aggregations, and the higher the molar ratio of asphaltene molecules, the higher the proportion of π−π stacking structure. With the increase of the molar ratio of asphaltene to resin increases from 0 : 1 to 1 : 0, the interfacial film thickness and interface formation energy increase from 2.366 nm and -143.89 kJ/mol to 3.796 nm and -304.09 kJ/mol, respectively, which indicated that asphaltene molecules play a more significant role in promoting the formation of interfacial film and maintaining its structural stability than resin molecules. The investigations in this study provide theoretical support for demulsification of the crude oil emulsion.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2987
Author(s):  
Samuel D. Fernández-Silva ◽  
Miguel A. Delgado ◽  
Claudia Roman ◽  
Moisés García-Morales

Based on the response surface methodology, a rheological and tribological study carried out on eco-friendly lubricants is described. Such ecolubricants consisted of fibrillated or crystalline nanocellulose in vegetable oil (castor oil, high oleic sunflower oil or their mixtures). Cellulose nanoparticles showed noticeable friction-reducing and anti-wear properties within the boundary and mixed lubrication regimes, which were found to be dependent on nanocellulose concentration, base oil composition and applied normal force. In general, both types of nanocellulose performed equally well. An excellent tribological performance, with large wear scar diameter reductions, was achieved with 3.3 wt.% (or higher) nanocellulose dispersions in castor oil-rich mixtures. The observed behavior was explained on the basis of enhanced viscosity of castor oil-rich suspensions and the preferential action of the most polar components, nanocellulose and ricinoleic acid, in the vicinity of the contact surfaces.


2021 ◽  
Author(s):  
Desheng Huang ◽  
Yunlong Li ◽  
Daoyong Yang

Abstract In this paper, techniques have been developed to quantify phase behaviour and physical properties including phase boundaries, swelling factors, and phase volumes for reservoir fluids containing polar components from both experimental and theoretical aspects. Experimentally, a total of five pressure-volume-temperature (PVT) experiments including three sets of DME/CO2/heavy oil systems and two sets of DME/CO2/water/heavy oil systems have been carried out to measure saturation pressures, phase volumes, and swelling factors by using a versatile PVT setup. Theoretically, the modified Peng-Robinson equation of state (PR EOS) incorporated with the Huron-Vidal mixing rule and the Péneloux volume-translation strategy is employed as the thermodynamic model to perform phase equilibrium calculations. It is observed that the experimentally measured saturation pressures of DME/CO2/water/heavy oil mixtures are higher than those of DME/CO2/heavy oil mixtures at the same temperature and same molar ratio of solvents and heavy oil, owing to the fact that more water molecules can be evaporated into vapour phase. The binary interaction parameters (BIPs) between DME/heavy oil and CO2/DME pair, which are obtained by matching the measured saturation pressures of DME/CO2/heavy oil mixtures, work well for DME/CO2/heavy oil mixtures in the presence and absence of water. In addition, a swelling effect of heavy oil can be enhanced by adding the DME and CO2 mixtures compared to only DME or CO2. The new model developed in this work is capable of accurately reproducing the experimentally measured multiphase boundaries, swelling factors, phase volumes with a root-mean-squared relative error (RMSRE) of 4.68%, 0.71%, and 9.35%, respectively, indicating that it can provide fundamental data for simulating, designing, and optimizing the hybrid solvent-thermal recovery processes for heavy oil reservoirs.


Author(s):  
Deependra Tripathi ◽  
Raj K. Singh ◽  
Kamal Kumar ◽  
Udai P. Singh

Abstract Coker kero stream is obtained from delayed coking which contains saturates with alpha olefins and PNA compounds which was physicochemical characterised. The fractions present in coker kero may be used further for value added products such as alkyl benzene and naphthalene etc. The study described potential of coker kero via aromatics and non-aromatics separation by using liquid-liquid extraction (LLE) with N-methyl pyrrolidone (NMP), acetonitrile and methanol as solvents of different polarity. Methanol imparts best colour improvement as per ASTM D-1500. Beside this, adsorption study on coker kero was performed using fuller’s earth, chalk powder, red ochre and wood-stick’s ash as adsorbents. The adsorption study suggested that fuller’s earth not only separate aromatics and non-aromatics form coker kero, but also acts as a better adsorbent than graphitic carbon (activated charcoal) and is found suitable for colour improvement comparatively. This study inferred the separation of polar components, improvement in the colour, odour and established the stable fuel. FT-IR study suggested that N-methyl Pyrrolidone gives better results comparatively other solvents. HC22 type analysis of coker kero raffinate and extract phase confirm the sharp extraction of coker kero feed using N-Methyl pyrrolidone as it is a good solvent for extraction of aromatics. GCMS and HRMS compositional analysis successfully performed for the coker kero and it is separated aromatic and non-aromatic fractions.


Sign in / Sign up

Export Citation Format

Share Document