FACIES MODELS IN EXPLORATION — THE CARBONATE PLATFORMS OF NORTH-EAST AUSTRALIA

1988 ◽  
Vol 28 (1) ◽  
pp. 123 ◽  
Author(s):  
Peter J. Davies ◽  
Philip A. Symonds ◽  
David A. Feary ◽  
Christopher J. Pi gram

The carbonate platforms of north-east Australia encapsulate a record of tectonic, eustatic, climatic and oceanographic dynamism that has controlled their formation. Collectively, the Great Barrier Reef and the Queensland and Marion Plateaus, together with the rift basins that separate them, define a new model for carbonate platform evolution with important exploration consequences. Cretaceous rifting, Paleocene breakup, Cainozoic northward drift with concomitant climatic changes, Neogene subsidence pulses, and sea-level perturbations have combined to produce tropical carbonate platforms overlying temperate, mixed carbonate/siliciclastic facies. The Great Barrier Reef tropical shelf platform thins to the south; reefs first developed in the north in the Early to Middle Miocene along the west- to east-trending distal margin of a foreland basin. The reefs of the Queensland and Marion Plateaus developed in the Middle Miocene and are the precursors of the carbonate platforms of the central and southern Great Barrier Reef. The Miocene Marion Plateau barrier and platform reefs backstepped to become the Plio-Pleistocene Great Barrier Reef. Three energy- and climate-related carbonate facies associations define new prospecting scenarios: the tropical, high energy reef model; the tropical, low energy, Halimeda bioherm model; and the subtropical, low energy, deep water, red algal/ foram/bryozoan bioherm model. These facies occur within four distinct structural/sedimentological associations: the progradative platform margin, the backstepped platform margin, the foreland basin, and the fault block association. The models can be readily applied to the Gulf of Papua/Torres Shelf and the Canning Basin and may produce exciting new insights into carbonate plays in these areas.

2006 ◽  
Vol 53 ◽  
pp. 23-37 ◽  
Author(s):  
Erik S. Rasmussen ◽  
Karen Dybkjær ◽  
Stefan Piasecki

The deposits of the Salten succession was laid down in a transgressive-regressive event during the latest Chattian (latest Oligocene) and/or the early Aquitanian (earliest Miocene). Five facies associations are recognised and interpretated as deposited in 1: High-energy fluvial, 2: Low-energy fluvial, 3: Flood plain, 4: Tidally influenced fluvial, and 5: Marginal marine/delta plain environments. The dating by biostratigraphy indicates that the Salten succession correlates with the Vejle Fjord Formation. The succession correlates with fluvial deposits outcropping in gravel pits at Addit and Voervadsbro and thus these deposits are of latest Oligocene – earliest Miocene. This is in contrast to former studies that indicate a correlation with the upper Lower – Middle Miocene Odderup Formation. The age of the Salten succession as revealed from this study indicates that the Miocene deposits in Jylland are progressively truncated towards the north and east.


1977 ◽  
Vol 30 (1) ◽  
pp. 21-27
Author(s):  
J. H. S. Osborn

The north-east coast of Australia is fronted by the world's longest coral reef system, which stretches in a north/south direction between latitudes 9° and 24° South. Although its outer limit is at distances of between 20 and 120 miles from the coast the enclosed waters are relatively shallow and contain many islands, detached reefs and shoals. The shipping lane between the coast and the Great Barrier Reef is known as the Inner Route. Torres Strait, its northern entrance, although extensive is shallow throughout and encumbered by reefs and islands to such an extent that only one route through it has been lit. The alternative routes are shallow or tortuous.


2016 ◽  
Vol 371 ◽  
pp. 120-129 ◽  
Author(s):  
Jody M. Webster ◽  
Nicholas P.J. George ◽  
Robin J. Beaman ◽  
Jon Hill ◽  
Ángel Puga-Bernabéu ◽  
...  

2021 ◽  
Vol 151 (2) ◽  
pp. 159
Author(s):  
Emese M. Bordy ◽  
Orsolya Sztanó

Two levels of volcaniclastics, comprising conglomerates, sandstones and mudstones, are interbedded with upper middle Miocene (upper Badenian) andesite pyroclastics near the Hungarian-Slovakian border in the distal region of the Central Slovakian Neogene Volcanic Field. Based on the field sedimentological investigations, the facies of the volcaniclastics (e.g., lateral and vertical grain size changes, sedimentary structures, textures, clast composition), their geometry and field relationships are documented herein with the aim of reconstructing the depositional environment. The silica-cemented volcaniclastics are mostly andesite clasts with only ~ 5% being granitoid, quarzitic, and tuff clasts as well as charred fossil wood fragments. The coarse-grained facies association includes crudely stratified, tabular or lenticular, clast-supported pebble-cobble conglomerates with erosive basal surfaces, b-axis imbrication, alternating with sets of cross-bedding. The fine-grained facies association comprises cross-bedded pebbly to medium-grained sandstone and lenses of tuffaceous clayey siltstone with rare horizontal lamination and water-escape structures. Rip-up mudstone clasts, with diametre up to 1 m, are present in both facies associations, revealing the co-existence of abandoned silty palaeo-channel plugs. Facies associations are arranged in several 0.5-4-m-thick, fining-upwards successions that likely formed in shallow channels as downstream- to laterally accreting longitudinal bars, extensive gravel sheets and bars that migrated in peak flow during floods. Palaeocurrent indicators (i.e., clast imbrication, direction of planar cross-bedding, orientation of petrified wood logs) show bedload transport by traction currents, initially towards ~S, and later towards ~W. Intermittently debris flows also occurred. Cross-bedded sandstones formed as in-channel transverse bars during medium/low discharge. Variation of grain size shows frequent discharge fluctuations during permanently wet conditions in the late Badenian. The 4-5-m-deep, low-sinuosity channels were part of a high-energy, gravel-bed braided-river system on the south-eastern foothills of the Lysec palaeo-volcano. Here, pyroclastics were reworked and redeposited as volcaniclastics during inter-eruption, high-discharge episodes.


2012 ◽  
Vol 4 (1) ◽  
Author(s):  
Nestor Oszczypko ◽  
Marta Oszczypko-Clowes

AbstractIn southern Poland, Miocene deposits have been recognised both in the Outer Carpathians and the Carpathian Foredeep (PCF). In the Outer Carpathians, the Early Miocene deposits represent the youngest part of the flysch sequence, while in the Polish Carpathian Foredeep they are developed on the basement platform. The inner foredeep (beneath the Carpathians) is composed of Early to Middle Miocene deposits, while the outer foredeep is filled up with the Middle Miocene (Badenian and Sarmatian) strata, up to 3,000mthick. The Early Miocene strata are mainly terrestrial in origin, whereas the Badenian and Sarmatian strata are marine. The Carpathian Foredeep developed as a peripheral foreland basin related to the moving Carpathian front. The main episodes of intensive subsidence in the PCF correspond to the period of progressive emplacement of the Western Carpathians onto the foreland plate. The important driving force of tectonic subsidence was the emplacement of the nappe load related to subduction roll-back. During that time the loading effect of the thickening of the Carpathian accretionary wedge on the foreland plate increased and was followed by progressive acceleration of total subsidence. The mean rate of the Carpathian overthrusting, and north to north-east migration of the axes of depocentres reached 12 mm/yr at that time. During the Late Badenian-Sarmatian, the rate of advance of the Carpathian accretionary wedge was lower than that of pinch-out migration and, as a result, the basin widened. The Miocene convergence of the Carpathian wedge resulted in the migration of depocentres and onlap of successively younger deposits onto the foreland plate.


Sign in / Sign up

Export Citation Format

Share Document