Microbiome analysis of the skin of sheep that are resistant or susceptible to breech flystrike

2021 ◽  
Author(s):  
J. C. Greeff ◽  
E. A. Paz ◽  
K. Munyard ◽  
A. C. Schlink ◽  
J. Smith ◽  
...  
Keyword(s):  
2021 ◽  
Vol 32 ◽  
pp. S318
Author(s):  
Shintaro Nakano ◽  
Yasuyuki Kawamoto ◽  
Kazuaki Harada ◽  
Ken Ito ◽  
Rika Saito ◽  
...  

Author(s):  
Annemarie Siebert ◽  
Katharina Hofmann ◽  
Lena Staib ◽  
Etienne V. Doll ◽  
Siegfried Scherer ◽  
...  

Abstract The highly complex raw milk matrix challenges the sample preparation for amplicon-sequencing due to low bacterial counts and high amounts of eukaryotic DNA originating from the cow. In this study, we optimized the extraction of bacterial DNA from raw milk for microbiome analysis and evaluated the impact of cycle numbers in the library-PCR. The selective lysis of eukaryotic cells by proteinase K and digestion of released DNA before bacterial lysis resulted in a high reduction of mostly eukaryotic DNA and increased the proportion of bacterial DNA. Comparative microbiome analysis showed that a combined enzymatic and mechanical lysis procedure using the DNeasy® PowerFood® Microbial Kit with a modified protocol was best suitable to achieve high DNA quantities after library-PCR and broad coverage of detected bacterial biodiversity. Increasing cycle numbers during library-PCR systematically altered results for species and beta-diversity with a tendency to overrepresentation or underrepresentation of particular taxa. To limit PCR bias, high cycle numbers should thus be avoided. An optimized DNA extraction yielding sufficient bacterial DNA and enabling higher PCR efficiency is fundamental for successful library preparation. We suggest that a protocol using ethylenediaminetetraacetic acid (EDTA) to resolve casein micelles, selective lysis of somatic cells, extraction of bacterial DNA with a combination of mechanical and enzymatic lysis, and restriction of PCR cycles for analysis of raw milk microbiomes is optimal even for samples with low bacterial numbers. Key points • Sample preparation for high-throughput 16S rRNA gene sequencing of raw milk microbiota. • Reduction of eukaryotic DNA by enzymatic digestion. • Shift of detected microbiome caused by high cycle numbers in library-PCR.


2021 ◽  
Vol 9 (2) ◽  
pp. 370
Author(s):  
Hyunjoon Park ◽  
Soyoung Yeo ◽  
Seokwon Kang ◽  
Chul Sung Huh

The role of the gut microbiota in the pathogenesis of inflammatory bowel disease (IBD) has been in focus for decades. Although metagenomic observations in patients/animal colitis models have been attempted, the microbiome results were still indefinite and broad taxonomic presumptions were made due to the cross-sectional studies. Herein, we conducted a longitudinal microbiome analysis in a dextran sulfate sodium (DSS)-induced colitis mouse model with a two-factor design based on serial DSS dose (0, 1, 2, and 3%) and duration for 12 days, and four mice from each group were sacrificed at two-day intervals. During the colitis development, a transition of the cecal microbial diversity from the normal state to dysbiosis and dynamic changes of the populations were observed. We identified genera that significantly induced or depleted depending on DSS exposure, and confirmed the correlations of the individual taxa to the colitis severity indicated by inflammatory biomarkers (intestinal bleeding and neutrophil-derived indicators). Of note, each taxonomic population showed its own susceptibility to the changing colitis status. Our findings suggest that an understanding of the individual susceptibility to colitis conditions may contribute to identifying the role of the gut microbes in the pathogenesis of IBD.


2020 ◽  
Vol 86 (22) ◽  
Author(s):  
Manuel G. García ◽  
María D. Pérez-Cárceles ◽  
Eduardo Osuna ◽  
Isabel Legaz

ABSTRACT Numerous studies relate differences in microbial communities to human health and disease; however, little is known about microbial changes that occur postmortem or the possible applications of microbiome analysis in the field of forensic science. The aim of this review was to study the microbiome and its applications in forensic sciences and to determine the main lines of investigation that are emerging, as well as its possible contributions to the forensic field. A systematic review of the human microbiome in relation to forensic science was carried out by following PRISMA guidelines. This study sheds light on the role of microbiome research in the postmortem interval during the process of decomposition, identifying death caused by drowning or sudden death, locating the geographical location of death, establishing a connection between the human microbiome and personal items, sexual contact, and the identification of individuals. Actinomycetaceae, Bacteroidaceae, Alcaligenaceae, and Bacilli play an important role in determining the postmortem interval. Aeromonas can be used to determine the cause of death, and Corynebacterium or Helicobacter pylori can be used to ascertain personal identity or geographical location. Several studies point to a promising future for microbiome analysis in the different fields of forensic science, opening up an important new area of research.


2018 ◽  
Vol 34 (17) ◽  
pp. 2881-2888 ◽  
Author(s):  
Trevor Cickovski ◽  
Giri Narasimhan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document