fecal microbiota transplantation
Recently Published Documents


TOTAL DOCUMENTS

1871
(FIVE YEARS 1062)

H-INDEX

65
(FIVE YEARS 22)

2022 ◽  
Vol 28 (1) ◽  
pp. 28-42
Author(s):  
Tae-Geun Gweon ◽  
Yoo Jin Lee ◽  
Kyeong Ok Kim ◽  
Sung Kyun Yim ◽  
Jae Seung Soh ◽  
...  

Author(s):  
Shaosong Xi ◽  
Yunguang Wang ◽  
Chenghao Wu ◽  
Weihua Peng ◽  
Ying Zhu ◽  
...  

BackgroundGut–microbiota–brain axis links the relationship between intestinal microbiota and sepsis-associated encephalopathy (SAE). However, the key mediators between them remain unclear.MethodsMemory test was determined by Water maze. Intestinal flora was measured by 16S RNA sequencing. Neurotransmitter was detected by high-performance liquid chromatography (HPLC). Histopathology was determined by H&E, immunofluorescence (IF), and terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) staining. Flow cytometry was employed to determine the proportion of macrophages.ResultsFecal microbiota transplantation (FMT) relieved hippocampus impairment of SAE rats by inhibiting inflammation cytokine secretion, the expression of IBA-1 and neurotransmitter disturbance, and cell apoptosis and autophagy, accompanied by the reduced M1 polarization and M1 pro-inflammation factors produced by macrophages in mesenteric lymph nodes (MLNs). Actually, M1 polarization in SAE rats depended on intestinal epithelial cell (IEC)-derived exosome. GW4869-initiated inhibition of exosome secretion notably abolished M1 polarization and the secretion of IL-1β. However, GW4869-mediated improvement of hippocampus impairment was counteracted by the delivery of recombinant interleukin (IL)-1β to hippocampus. Mechanistically, IEC-derived exosome induced the excessive circulating IL-1β produced by CP-R048 macrophages, which subsequently induced damage and apoptosis of hippocampal neurons H19-7 in an autophagy-dependent manner. And reactivation of autophagy facilitates intestinal IL-1β-mediated hippocampal neuron injury.ConclusionCollectively, intestinal flora disturbance induced the exosome release of IECs, which subsequently caused M1 polarization in MLNs and the accumulation of circulating IL-1β. Circulating IL-1β promoted the damage and apoptosis of neurons in an autophagy-dependent manner. Possibly, targeting intestinal flora or IEC-derived exosome contributes to the treatment of SAE.


2022 ◽  
Vol 11 (2) ◽  
pp. 442
Author(s):  
Anna Herman ◽  
Andrzej Przemysław Herman

The purpose of this review is to summarize the current acquiredknowledge of Candida overgrowth in the intestine as a possible etiology of autism spectrum disorder (ASD). The influence of Candida sp. on the immune system, brain, and behavior of children with ASD isdescribed. The benefits of interventions such as a carbohydrates-exclusion diet, probiotic supplementation, antifungal agents, fecal microbiota transplantation (FMT), and microbiota transfer therapy (MTT) will be also discussed. Our literature query showed that the results of most studies do not fully support the hypothesis that Candida overgrowth is correlated with gastrointestinal (GI) problems and contributes to autism behavioral symptoms occurrence. On the one hand, it was reported that the modulation of microbiota composition in the gut may decrease Candida overgrowth, help reduce GI problems and autism symptoms. On the other hand, studies on humans suggesting the beneficial effects of a sugar-free diet, probiotic supplementation, FMT and MTT treatment in ASD are limited and inconclusive. Due to the increasing prevalence of ASD, studies on the etiology of this disorder are extremely needed and valuable. However, to elucidate the possible involvement of Candida in the pathophysiology of ASD, more reliable and well-designed research is certainly required.


Medicina ◽  
2022 ◽  
Vol 58 (1) ◽  
pp. 84
Author(s):  
Sergii Tkach ◽  
Andrii Dorofeyev ◽  
Iurii Kuzenko ◽  
Nadiya Boyko ◽  
Tetyana Falalyeyeva ◽  
...  

The intestinal microbiota plays an important role in maintaining human health, and its alteration is now associated with the development of various gastrointestinal (ulcerative colitis, irritable bowel syndrome, constipation, etc.) and extraintestinal diseases, such as cancer, metabolic syndrome, neuropsychiatric diseases. In this context, it is not surprising that gut microbiota modification methods may constitute a therapy whose potential has not yet been fully investigated. In this regard, the most interesting method is thought to be fecal microbiota transplantation, which consists of the simultaneous replacement of the intestinal microbiota of a sick recipient with fecal material from a healthy donor. This review summarizes the most interesting findings on the application of fecal microbiota transplantation in gastrointestinal and extraintestinal pathologies.


2022 ◽  
Vol 29 ◽  
Author(s):  
Federica D'Amico ◽  
Monica Barone ◽  
Teresa Tavella ◽  
Simone Rampelli ◽  
Patrizia Brigidi ◽  
...  

Abstract: The human gut microbiome has received a crescendo of attention in recent years, due to the countless influences on human pathophysiology, including cancer. Research on cancer and anticancer therapy is constantly looking for new hints to improve the response to therapy while reducing the risk of relapse. In this scenario, the gut microbiome and the plethora of microbial-derived metabolites are considered a new opening in the development of innovative anticancer treatments for a better prognosis. This narrative review summarizes the current knowledge on the role of the gut microbiome in the onset and progression of cancer, as well as in response to chemo-immunotherapy. Recent findings regarding the tumor microbiome and its implications for clinical practice are also commented on. Current microbiome-based intervention strategies (i.e., prebiotics, probiotics, live biotherapeutics and fecal microbiota transplantation) are then discussed, along with key shortcomings, including a lack of long-term safety information in patients who are already severely compromised by standard treatments. The implementation of bioinformatic tools applied to microbiomics and other omics data, such as machine learning, has an enormous potential to push research in the field, enabling the prediction of health risk and therapeutic outcomes, for a truly personalized precision medicine.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Piotr Szychowiak ◽  
Khanh Villageois-Tran ◽  
Juliette Patrier ◽  
Jean-François Timsit ◽  
Étienne Ruppé

AbstractThe composition of the gut microbiota is highly dynamic and changes according to various conditions. The gut microbiota mainly includes difficult-to-cultivate anaerobic bacteria, hence knowledge about its composition has significantly arisen from culture-independent methods based on next-generation sequencing (NGS) such as 16S profiling and shotgun metagenomics. The gut microbiota of patients hospitalized in intensive care units (ICU) undergoes many alterations because of critical illness, antibiotics, and other ICU-specific medications. It is then characterized by lower richness and diversity, and dominated by opportunistic pathogens such as Clostridioides difficile and multidrug-resistant bacteria. These alterations are associated with an increased risk of infectious complications or death. Specifically, at the time of writing, it appears possible to identify distinct microbiota patterns associated with severity or infectivity in COVID-19 patients, paving the way for the potential use of dysbiosis markers to predict patient outcomes. Correcting the microbiota disturbances to avoid their consequences is now possible. Fecal microbiota transplantation is recommended in recurrent C. difficile infections and microbiota-protecting treatments such as antibiotic inactivators are currently being developed. The growing interest in the microbiota and microbiota-associated therapies suggests that the control of the dysbiosis could be a key factor in the management of critically ill patients. The present narrative review aims to provide a synthetic overview of microbiota, from healthy individuals to critically ill patients. After an introduction to the different techniques used for studying the microbiota, we review the determinants involved in the alteration of the microbiota in ICU patients and the latter’s consequences. Last, we assess the means to prevent or correct microbiota alteration.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yuan Qiao ◽  
Zhichun Zhang ◽  
Yuanyuan Zhai ◽  
Xu Yan ◽  
Wenling Zhou ◽  
...  

The gut microbiota, often viewed as a “digestive organ,” can influence the development of obesity and related metabolic disorders. Diet is significantly important in shaping the structure and modulating the function of the gut microbiota. Apigenin (Api) widely exists in fruits and vegetables as a naturally occurring flavonoid and has anti-obesogenic, anti-inflammatory, and anti-carcinogenic properties. Its low bioavailability means it has enough time to interact with the intestine thus becomes a potential substrate for the gut intestine; thus, contributing to gut health. Here, we show that Api reduces whole-body weight, low-grade inflammation, and insulin resistance in high-fat diet (HFD)-induced obese mice. Our results reflect that Api supplementation can substantially improve intestinal dysbiosis triggered by HFD and restores gut barrier damage by alleviating metabolic endotoxemia. Augmentation of Akkermansia and Incertae_Sedis along with reduction of Faecalibaculum and Dubosiella at the genus level potentially mediated the protective effects of Api on metabolic syndrome. Furthermore, we show that the impact of Api on the reduction of body weight and the modification of gut microbiota could be transferred from Api-administered mice to HFD-feeding mice via horizontal fecal microbiota transplantation. Taken together, our data highlight the prebiotic role of Api and show its contribution to the restraint of gut dysbiosis and metabolic deterioration associated with obesity in mice.


Sign in / Sign up

Export Citation Format

Share Document