Selection of reference plants for 15N natural abundance assessment of N2 fixation by crop and pasture legumes in south-west Australia

1994 ◽  
Vol 45 (1) ◽  
pp. 133 ◽  
Author(s):  
JS Pate ◽  
MJ Unkovich ◽  
EL Armstrong ◽  
P Sanford

The 15N natural abundance (S15N) of the shoot total N of a range of non-N2 fixing potential reference species was compared with that of nodulated field pea (Pisum sativum L.), narrow leafed lupin (Lupinus angustijolius L.) or subterranean clover (Trijolium subterraneum L.) across a range of field sites, to which N fertilizers had not been applied in the season of study. Shoot S15N values of reference species lay mostly within the range from +3 to +5%o and there was some evidence of lower S15N values in gramineaceous than dicotyledonous non-legume species. Continuous sampling within crops of each legume showed S15N values to differ consistently between and within potential reference species through the season. The S15N values of seedlings of four non legume species in a lupin crop were closer to that of soil N03-N (S15N = 4.2%o) than soil NH4-N (S15N = 7.9%0). Shoot S15N values of non-nodulated pea, lupin and subterranean clover, and a range of possible reference species all sand-cultured on a defined nitrate source (S15N = 7.5%), suggested little or no discrimination during utilization of nitrate. However, when four candidate reference species were sand cultured with nodulated actively fixing subterranean clover on the same nitrate source, the S15N of the ryegrass was lowered significantly below that of the NO3. Field plot comparisons of nine potential reference species with nodulated field pea showed certain species to resemble field pea more closely than others in terms of the S15N value of their shoots. Reference plants sampled within or well outside the rooting zone of an actively fixing legume (subterranean clover, field pea or lupin) showed significantly lower shoot S15N of mixed grass components when harvested in root contact with, as opposed to well distant from, subterranean clover. A similar effect was observed for barley within v. outside the rooting zone of pea, but no such effects were observed between capeweed and subterranean clover, pea and radish, or for any of five reference plants matched with lupin. The data are utilized to select appropriate reference plants for field assessments of N2 fixation under south-west Australian conditions.

1995 ◽  
Vol 46 (7) ◽  
pp. 1401 ◽  
Author(s):  
RR Gault ◽  
MB Peoples ◽  
GL Turner ◽  
DM Lilley ◽  
J Brockwell ◽  
...  

Nodulation, N2 fixation (estimated by 15N natural abundance methods) and dry matter production were studied in a lucerne (Medicago sativa) crop managed for hay production at Ginninderra Experiment Station, A.C .T. Measurements were taken in the year of establishment and during two subsequent growing seasons. There were three treatments: (1) no inoculation and no annual fertilizer applied, (2) initial inoculation and superphosphate applied annually, (3) no inoculation, superphosphate applied annually and ammonium sulfate periodically. Before planting and after each growth season, soil was analysed for extractable mineral nitrogen, total nitrogen and the 15N natural abundance of this nitrogen, to the depth explored by lucerne roots. Before planting, no appropriate root-nodule bacteria (Rhizobium meliloti) were detected in the soil and initially plants were nodulated only in the inoculated treatment. Thereafter nodulation increased on the other treatments. Eight months after sowing there were no differences between treatments in numbers of R. meliloti g-l soil or in nodulation. In the third growing season, almost 30 kg ha-1 (dry wt) of nodules were recovered to a depth of 25 cm. These nodules were primarily located on fine, ephemeral roots and many appeared to be renewed after cutting of the lucerne. In the year of establishment, dry matter yields (0% moisture) totalled 3 to 4 t ha-1 in three hay cuts. In succeeding years, total yields were in the range 10 to 13 t ha-1 in four or five cuts per season. Nitrogen removed in the harvested lucerne reached 340 to 410 kg N ha-lyr-l in the second and third years and between 65 and 96% of this N arose from N2 fixation, depending on the method of calculation used. Poorer dry matter production and N2 fixation in treatment 1 in the third growing season was attributed to an insufficient supply of available phosphorus. Fixed N removed in Lucerne hay from treatment 2 totalled at least 640 kg N ha-1 in the three years of the experiment. Also, there were substantial increases in soil nitrogen due to lucerne growth. Although soil compaction made the quantification difficult, at the end of the experiment it was estimated that there was at least an extra 800 kg N ha-1 in the total soil nitrogen under lucerne compared to strips of Phalaris aquatica grown between the lucerne plots. It was concluded that lucerne contributed at least the same amount of fixed nitrogen to the soil as was being removed in the harvested hay.


2004 ◽  
Vol 44 (12) ◽  
pp. 1165 ◽  
Author(s):  
A. M. Bowman ◽  
W. Smith ◽  
M. B. Peoples ◽  
J. Brockwell

Total productivity and legume nitrogen fixation (N2 fixation) in dryland pastures were examined in a 2 year study (1999–2001) on 118 farms in central-western New South Wales. Pasture exclosure cages, placed at 217 on-farm sites, were harvested on 7 occasions and the foliage hand-sorted according to species in order to measure shoot dry matter (DM). The separated legume shoot material collected in spring 1999 (52 different legume samples) and 2000 (76 different legume samples) from a subset of representative pastures (41 cages on 28 different farms in 1999, 32 cages on 25 different farms in 2000) was also analysed for concentration of nitrogen (%N) and 15N natural abundance. These data were subsequently used to calculate the proportion of the legume shoot N derived from atmospheric N (%Ndfa), comparative measures of the relative efficiency of N2 fixation (kg N fixed/t DM accumulated) and the amounts of shoot N fixed (kg N/ha). The survey encompassed 8 common pasture types, and 5 others that were less common, ranging from native perennial grass pastures with little legume content to lucerne (Medicago sativa L.) pastures with and without companion clovers. Fifteen legume species were found in the pastures, some only occasionally. Lucerne and white clover (Trifolium repens L.) were the only perennials. Mean spring estimates of %Ndfa were similar in 1999 and 2000 for lucerne (72 and 81%, respectively), rose clover (T. hirtum All., 82 and 77%) and annual medics (Medicago spp., 89 and 86%). For the remaining 12 legume species, measures of %Ndfa ranged from 64 to 95% and averaged 83%. Shoot %N contents were greater for lucerne than for the other 14 legumes and this was reflected in the comparative measures of N2 fixation which ranged from 14.5 kg N/t DM for rose clover to 25.7 kg N/t DM for lucerne in 2000. The most productive pasture type comprised lucerne plus balansa clover [T. michelianum Savi var. balansae (Boiss.) Azn.], white clover or arrowleaf clover (T. vesiculosum Savi), but all pasture types that contained lucerne were highly productive. Spring was the most productive season and summer the least. Lucerne was overwhelmingly the most productive legume and was responsible for >83% of the fixed N in those pastures that contained both lucerne and other legumes. Lucerne productivity was approximately uniform throughout the year whereas, for other pastures, especially those based on rose clover or subterranean clover (T. subterraneum L.), there were sharp peaks in spring and little or no dry matter production over summer. The presence of lucerne in pastures significantly (P<0.05) reduced broadleaf weeds. It was concluded that, where there are requirements in central-western New South Wales agriculture for uniform forage production throughout the year and a high input of fixed N, lucerne is substantially superior to other species.


1994 ◽  
Vol 45 (1) ◽  
pp. 119 ◽  
Author(s):  
MJ Unkovich ◽  
JS Pate ◽  
P Sanford ◽  
EL Armstrong

Precision of estimation of the proportion of legume N derived from N2 fixation (%Ndfa) was assessed in relation to subterranean clover (Trifolium subterraneum L.) pastures and crops of pea (Pisum sativum L.) and lupin (Lupinus angustifolius L.) under south-west Australian conditions. By using a standardized 10-point sampling procedure of paired sampling of legume and reference plant and reference plant 15N natural abundance (S15N) values in the range from +2.9 to +4. 0%o, %Ndfa of sample crops of lupin and field pea and a clover pasture were assessed with respective precisions of 93� O.6%, 76� 2.4% and 91�1.3% (� s.e., n = 10). Effects on S15N due to isotope discrimination during fixation and subsequent distribution of N by the three study legumes were studied using sand-cultured, fully symbiotic plant material. The resulting S15N data (B values) showed consistently more negative values for shoots than roots (all species), no significant effects of cultivar on B values (all species), a marked effect of rhizobial strain on B value (subclover) and a tendency for B values to fall with plant age (pea and lupin). The likely magnitude of errors in %Ndfa estimates due to incorrect choice of B value was indicated. By using data for reference plant S15N values from field surveys and previously assessed error factors in mass spectrometric measurement of S15N, precision of estimation of %Ndfa by using bulked material from the 10-point field sampling procedure was predicted for situations ranging from where a legume was obtaining only minimal amounts (10%) through to the bulk (90%) of its N by atmospheric fixation.


1995 ◽  
Vol 46 (1) ◽  
pp. 225 ◽  
Author(s):  
JA Doughton ◽  
PG Saffigna ◽  
I Vallis ◽  
RJ Mayer

The 15N enrichment and 15N natural abundance methods for estimating N2 fixation in chickpea were compared over a range of soil NO3-N levels at crop establishment varying from 10 to 326 kg N/ha (0-120 cm depth). Barley was used as a non-N2 fixing control crop. Both methods estimated reduced N2 fixation as soil NO3-N levels at crop establishment increased. Similar estimates of % N2 fixation were obtained at high values, but at low values the enrichment method gave lower estimates, some of which were negative. The 15N natural abundance method provided realistic estimates of % N2 fixation across all soil N03-N levels at crop establishment. An asymptotic curve described a close ( R2 = 0.95) relationship between these factors. Standard errors of estimates of means for the 15N natural abundance method remained acceptable and relatively stable over the full range of measurements; however, with the 15N enrichment method they became unacceptably large at low values of % N2 fixation. These large errors may have been partly due to legume and control plants assimilating mineral N of differing 15N enrichment. High mineral N levels associated with low values of % N2 fixation were also shown to reduce reliability of N2 fixation values estimated by the 15N enrichment method. These errors caused potentially greater inaccuracy at low values of % N2 fixation than at high values. To compare N2 fixation means statistically, transformations were necessary to stabilize variance and to impart lower weightings to plots with low values of % N2 fixation.


Sign in / Sign up

Export Citation Format

Share Document