scholarly journals The Magellanic Clouds as a Template for the Study of Stellar Populations and Galaxy Interactions

2008 ◽  
Vol 25 (3) ◽  
pp. 121-128 ◽  
Author(s):  
M.-R. L. Cioni ◽  
K. Bekki ◽  
G. Clementini ◽  
W. J. G. de Blok ◽  
J. P. Emerson ◽  
...  

AbstractThe Magellanic System represents one of the best places to study the formation and evolution of galaxies. Photometric surveys of various depths, areas and wavelengths have had a significant impact on our understanding of the system; however, a complete picture is still lacking. VMC (the VISTA near-infrared YJKs survey of the Magellanic System) will provide new data to derive the spatially resolved star formation history and to construct a three-dimensional map of the system. These data combined with those from other ongoing and planned surveys will give us an absolutely unique view of the system opening up the doors to truly new science!

1989 ◽  
Vol 136 ◽  
pp. 121-128 ◽  
Author(s):  
P. Cox ◽  
R. Laureijs

IRAS observations of the Galactic Center are presented. The maps at 12, 25, 60 and 100 μm have a typical resolution of a few arcmin and cover an area 6×2 deg2 centered on SgrA. All data have been corrected for the zodiacal light contamination and for the diffuse emission associated with the galactic disk. The infrared radiation originating in the Galactic Center arises from well-defined sources which can be identified with known radio sources and from an extended emission which accounts for most of the infrared luminosity. The total infrared luminosity associated with the Galactic Center (area 3°×2°) amounts to 109L⊙. The sources contribute 10% to this luminosity. A comparison with surveys in the radio continuum and in the near infrared is presented. Results are analyzed in terms of star formation history. In particular, it is suggested that the dominant heating source for the dust is the population of cool stars - K and M giants - comprising the galactic nucleus.


2019 ◽  
Vol 486 (4) ◽  
pp. 5104-5123 ◽  
Author(s):  
C Laigle ◽  
I Davidzon ◽  
O Ilbert ◽  
J Devriendt ◽  
D Kashino ◽  
...  

Abstract Using the light-cone from the cosmological hydrodynamical simulation horizon-AGN, we produced a photometric catalogue over 0 < z < 4 with apparent magnitudes in COSMOS, Dark Energy Survey, Large Synoptic Survey Telescope (LSST)-like, and Euclid-like filters at depths comparable to these surveys. The virtual photometry accounts for the complex star formation history (SFH) and metal enrichment of horizon-AGN galaxies, and consistently includes magnitude errors, dust attenuation, and absorption by intergalactic medium. The COSMOS-like photometry is fitted in the same configuration as the COSMOS2015 catalogue. We then quantify random and systematic errors of photometric redshifts, stellar masses, and star formation rates (SFR). Photometric redshifts and redshift errors capture the same dependencies on magnitude and redshift as found in COSMOS2015, excluding the impact of source extraction. COSMOS-like stellar masses are well recovered with a dispersion typically lower than 0.1 dex. The simple SFHs and metallicities of the templates induce a systematic underestimation of stellar masses at z < 1.5 by at most 0.12 dex. SFR estimates exhibit a dust-induced bimodality combined with a larger scatter (typically between 0.2 and 0.6 dex). We also use our mock catalogue to predict photometric redshifts and stellar masses in future imaging surveys. We stress that adding Euclid near-infrared photometry to the LSST-like baseline improves redshift accuracy especially at the faint end and decreases the outlier fraction by a factor ∼2. It also considerably improves stellar masses, reducing the scatter up to a factor 3. It would therefore be mutually beneficial for LSST and Euclid to work in synergy.


2018 ◽  
Vol 14 (S344) ◽  
pp. 53-56
Author(s):  
Maria-Rosa L. Cioni ◽  
Florian Niederhofer ◽  
Stefano Rubele ◽  
Ning-Chen Sun

AbstractVISTA observed the Small Magellanic Cloud (SMC), as part of the VISTA survey of the Magellanic Clouds system (VMC), for six years (2010–2016). The acquired multi-epoch YJKs images have allowed us to probe the stellar populations to an exceptional level of detail across an unprecedented wide area in the near-infrared. This contribution highlights the most recent VMC results obtained on the SMC focusing, in particular, on the clustering of young stellar populations, on the proper motion of stars in the main body of the galaxy and on the spatial distribution of the star formation history.


2007 ◽  
Vol 3 (S245) ◽  
pp. 385-390
Author(s):  
Sukyoung K. Yi

AbstractEarly-type galaxies, considered as large bulges, have been found to have had a much-more-than-boring star formation history in recent years by the UV satellite GALEX. The most massive bulges, brightest cluster galaxies, appear to be relatively free of young stars. But smaller bulges, normal ellipticals and lenticulars, often show unambiguous sign of recent star formation in their UV flux. The fraction of such UV-bright bulges in the volume-limited sample climbs up to the staggering 30%. The bulges of spirals follow similar trends but a larger fraction showing signs of current and recent star formation. The implication on the bulge formation and evolution is discussed.


2006 ◽  
Vol 2 (S235) ◽  
pp. 313-313
Author(s):  
J. Yin ◽  
J.L. Hou ◽  
R.X. Chang ◽  
S. Boissier ◽  
N. Prantzos

Andromeda galaxy (M31,NGC224) is the biggest spiral in the Local Group. By studying the star formation history(SFH) and chemical evolution of M31, and comparing with the Milky Way Galaxy, we are able to understand more about the formation and evolution of spiral galaxies.


2013 ◽  
Vol 438 (2) ◽  
pp. 1067-1080 ◽  
Author(s):  
I. Meschin ◽  
C. Gallart ◽  
A. Aparicio ◽  
S. L. Hidalgo ◽  
M. Monelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document